Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the field of a $ 2$-block. II


Author: B. G. Basmaji
Journal: Proc. Amer. Math. Soc. 90 (1984), 195-198
MSC: Primary 20C15; Secondary 20C20
DOI: https://doi.org/10.1090/S0002-9939-1984-0727231-6
MathSciNet review: 727231
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Every real $ 2$-block $ B$ of a finite metabelian group contains an irreducible character $ \theta $ such that $ Q(B) = Q(\theta )$.


References [Enhancements On Off] (What's this?)

  • [1] B. G. Basmaji, Monomial representations and metablien groups, Nagoya Math. J. 35 (1969), 99-107. MR 39 #5709. MR 0244394 (39:5709)
  • [2] -, Modular representations of metabelian groups, Trans. Amer. Math. Soc. 169 (1972), 389-399. MR 46 #9153. MR 0310050 (46:9153)
  • [3] -, On the field of a $ 2$-block, Proc. Amer. Math. Soc. 83 (1981), 471-475. MR 627672 (82k:20017)
  • [4] R. Gow, Real-valued and $ 2$-rational group characters, J. Algebra 61 (1979), 388-413. MR 559848 (81a:20014)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C15, 20C20

Retrieve articles in all journals with MSC: 20C15, 20C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0727231-6
Keywords: Characters, real characters, $ p$-blocks, real $ p$-blocks, $ 2$-rational characters, modular and ordinary representations
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society