Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An algebraic periodicity theorem for spheres


Author: Joseph P. Brennan
Journal: Proc. Amer. Math. Soc. 90 (1984), 215-218
MSC: Primary 18F25; Secondary 14F15
DOI: https://doi.org/10.1090/S0002-9939-1984-0727236-5
MathSciNet review: 727236
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A periodicity theorem is given for spheres over a field of finite level generalizing results of Jouanolou. An extension of this result gives families of smooth affine varities with isomorphic $ K$-groups.


References [Enhancements On Off] (What's this?)

  • [1] M. Atyah, $ K$-theory, Benjamin, New York and Amsterdam, 1967. MR 0224083 (36:7130)
  • [2] R. Fossum, Vector bundles over spheres are algebraic, Invent. Math. 8 (1969), 222-225. MR 0250298 (40:3537)
  • [3] D. Grayson, Higher algebraic $ K$-theory. II, Algebraic $ K$-Theory (M. R. Stein, ed.), Evanston, 1976, Lecture Notes in Math., vol. 551, Springer-Verlag, Berlin, Heidelberg and New York, 1976, pp. 217-240. MR 0574096 (58:28137)
  • [4] J.-P. Jouanolou, Comparison des $ K$-théories algébrique et topologique de quelques variétés algébrique, C. R. Acad. Sci. Paris Sér A 272 (1971), 1373-1375. MR 0292848 (45:1930)
  • [5] -, Quelques calculs en $ K$-theorie des schemes, Algebraic $ K$-Theory. I (H. Bass, ed.), Lecture Notes in Math. vol. 341, Springer-Verlag, Berlin, Heidelberg and New York, 1973, pp. 317-335. MR 0417181 (54:5239)
  • [6] K. Kato, A generalization of local class field theory using $ K$-groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math 27 (1980), 603-683. MR 603953 (83g:12020a)
  • [7] T. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, Mass., 1973. MR 0396410 (53:277)
  • [8] A. Pfister, Zur Darstellung von $ - 1$ Als Summe von Quadraten in einem Körper, J. London Math. Soc. Ser. I 40 (1965), 159-165. MR 0175893 (31:169)
  • [9] D. Quillen, Higher $ K$-theories for categories with exact sequences, New Developments in Topology (G. Segal, ed.), London Math. Soc. Lecture Notes Ser., No. 11, Cambridge Univ. Press, London and New York, 1974, pp. 95-103. MR 0335604 (49:384)
  • [10] -, Higher algebraic $ K$-theory. I, Algebraic $ K$-Theory. I (H. Bass, ed.), Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, Heidelberg and New York, 1973, pp. 85-147. MR 0338129 (49:2895)
  • [11] A. A. Suslin, Mennicke symbols and their applications in the $ K$-theory of fields, Algebraic $ K$-Theory (R. Keith Dennis, ed.), Lecture Notes in Math., vol. 966, Springer-Verlag, Berlin, Heidelberg and New York, 1982, pp. 331-356. MR 689382 (84f:18023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18F25, 14F15

Retrieve articles in all journals with MSC: 18F25, 14F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0727236-5
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society