REFLEXIVITY OF A BANACH SPACE
WITH A UNIFORMLY NORMAL STRUCTURE

JONG SOOK BAE

Abstract. In this note we prove that any Banach space with a uniformly normal structure is reflexive.

1. Introduction. In [4] Gillespie and Williams gave the concept of uniformly normal structure of Banach spaces. They showed that any nonexpansive self-map of a closed convex bounded subset of a Banach space with a uniformly normal structure has a fixed point, and, in [5], obtained the same result for the Kannan-type maps.

In this note, we show that any Banach space with a uniformly normal structure is reflexive, and, consequently, the main results of Gillespie and Williams are actually contained in those of Kirk [9], Godhe [6] and Kannan [8], respectively.

2. Main result. A Banach space X is said to have a uniformly normal structure if there exists a number h, $0 < h < 1$, such that if C is a closed convex bounded subset of X, then there exists x in C such that $\sup\{\|x - y\|; y \in C\} \leq h \delta(C)$, where $\delta(C)$ denotes the diameter of the set C.

To prove our theorem, we adopt the idea of Huff [7].

Theorem. Any Banach space with a uniformly normal structure is reflexive.

Proof. We use a theorem of Eberlein and Smulian [2, p. 51]. Let $\{K_n\}$ be a decreasing sequence of nonvoid closed convex bounded subsets of a given Banach space with a uniformly normal structure. We need to show that $\bigcap K_n \neq \emptyset$. For each n, choose $x_n \in K_n$. Call a sequence $\{y_n\}$ a c-subsequence of $\{x_n\}$ provided there exists a sequence of integers $1 = p_1 \leq q_1 < p_2 \leq q_2 < \cdots$ and coefficients $\alpha_i \geq 0$ such that, for each n,

$$\sum_{i=p_n}^{q_n} \alpha_i = 1, \quad y_n = \sum_{i=p_n}^{q_n} \alpha_i x_i.$$

Then for each $\varepsilon > 0$, there exists a c-subsequence $\{y_{n_m}\}$ of $\{x_n\}$ with $\|y_{n_m} - y_{m}\| < \varepsilon$ for each n, m. Suppose this is not true for some $\varepsilon > 0$.

Let $L_m = \{x_n\}_{n=m}^{\infty}$. Let $\text{co}(L_m)$ and $\overline{\text{co}}(L_m)$ denote the convex hull and the closed convex hull of L_m, respectively. Then there exists h, $0 < h < 1$, and $y'_1 \in \overline{\text{co}}(L_1)$ such

Received by the editors April 15, 1983 and, in revised form, June 24, 1983.

1980 Mathematics Subject Classification. Primary 46B20; Secondary 47H10.

Key words and phrases. Uniformly normal structures, reflexive Banach spaces.

©1984 American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
that \(\sup(\|y'_1 - y\|; y \in \overline{\text{co}}(L_1)) \leq h\delta(L_1) \). Let \(0 < h < h_1 < 1 \). Then by the triangle inequality there exists \(y'_1 \in \text{co}(L_1) \) such that \(\sup(\|y'_1 - y\|; y \in \overline{\text{co}}(L_1)) \leq h\delta(L_1) \).

Since \(y'_1 \) is a finite linear combination of members in \(L_1 \), there exists a \(c \)-subsequence \(\{y_n\} \) of \(\{x_n\} \) such that \(\sup(\|y_n - y\|; y \in \text{co}(L_{p_n})) \leq h\delta(L_{p_n}) \leq h\delta(L_1) \), and this inequality shows that \(\delta(\{y_n\}) \leq h\delta(L_1) \). By repeating the argument, there exists a successive \(c \)-subsequence with diameter less than or equal to \(h^n_1\delta(L_1) \). We need only repeat the argument a sufficient number \(k \) of times with \(h^{k+1}_1\delta(L_1) < \epsilon \) to obtain a contradiction.

Next by the diagonal method, there exists a \(c \)-subsequence of \(\{x_n\} \) which is norm Cauchy, and hence convergent to some \(y \). Then \(y \in K_n \).

Remarks. Bynum [1] showed that a uniformly convex Banach space has a uniformly normal structure. But the converse is not true. For example, the space \(l_2 \), renormed by

\[
\| (x_j) \|_1 = \max \left(|x_1|, \left(\sum_{j=2}^{\infty} |x_j|^2 \right)^{1/2} \right)
\]

has a uniformly normal structure, but \((l_2, \| \cdot \|_1) \) is not uniformly convex.

Bynum [1] also showed that there exists a reflexive space with normal structure, but without a uniformly normal structure.

References

Department of Mathematics, Chungnam National University, Daejeon, Seoul, Korea