A NOTE ON AN OSCILLATION CRITERION FOR AN EQUATION WITH DAMPED TERM

JURANG YAN

Abstract. A new oscillation criterion is given for the equation \(x''(t) + p(t)x'(t) + q(t)x(t) = 0, \quad t \in [t_0, \infty), \) where \(p(t) \) and \(q(t) \) are allowed to change sign on \([t_0, \infty)\).

Let us consider the second order differential equation with damped term

\[
(1) \quad x''(t) + p(t)x'(t) + q(t)x(t) = 0,
\]

and the more general equation

\[
(1)' \quad x''(t) + p(t)x'(t) + q(t)f(x(t)) = 0,
\]

where \(p, q \in C[t_0, \infty) \) and are allowed to assume negative values for arbitrarily large \(t, f \in C(R), \) \(xf(x) > 0 \) for \(x \neq 0. \)

We shall restrict our attention to solutions of (1) or (1)' which exist on some ray \([t, \infty)\). A solution of an equation is called oscillatory if it has no largest zero; otherwise it is nonoscillatory. An equation is said to be oscillatory if every solution is oscillatory.

For the second order linear differential equation

\[
(*) \quad x''(t) + q(t)x(t) = 0,
\]

Wintner [6] proved that a sufficient condition for oscillation was

\[
(**) \quad \lim_{t \to \infty} \frac{1}{t} \int_{t_0}^{t} q(\tau) \, d\tau \, ds = \infty.
\]

Hartman [3] proved that the limit cannot be replaced by the upper limit in condition (**) and

\[
- \infty < \liminf_{t \to \infty} \frac{1}{t} \int_{t_0}^{t} q(\tau) \, d\tau \, ds < \limsup_{t \to \infty} \frac{1}{t} \int_{t_0}^{t} q(\tau) \, d\tau \, ds \leq \infty
\]

implies (*) is oscillatory.

Later, important developments by Willett and Coles in averaging techniques for oscillation of (*) were made. Willett [5] and Coles [2], respectively, established more general theorems by considering weighted averages of the integral of \(q. \)

Received by the editors October 25, 1982.

1980 Mathematics Subject Classification. Primary 34C10, 34C15.

Key words and phrases. Second order differential equation with damped term, oscillation.
Several years ago Kamenev [4] obtained an oscillation criterion for \((\star)\), namely, \((\star)\) is oscillatory if for some \(n > 2\),
\[
\lim_{t \to \infty} \sup_{t_0} t^{1-n} \int_{t_0}^{t} (t-s)^{n-1} q(s) \, ds = \infty,
\]
which extended Wintner’s result.

Recently, Yeh [8] has shown some oscillation criteria of \((1)'\) by using a technique similar to Kamenev’s, which included results of [1, 4 and 6].

The purpose of this note is to proceed further in this direction and present a new oscillation theorem which improves Kamenev’s criterion. A more general version of the theorem contains the theorems of Yeh [7 and 8].

Our result is as follows:

Theorem. Suppose for some \(\alpha \in (1, \infty)\) and \(\beta \in [0, 1)\),
\[
(2) \quad \lim_{t \to \infty} \sup_{t_0} t^{-\alpha} \int_{t_0}^{t} (t-s)^{-\alpha \beta} q(s) \, ds = \infty,
\]
\[
(3) \quad \lim_{t \to \infty} \sup_{t_0} t^{-\alpha} \int_{t_0}^{t} [(t-s)p(s)s + \alpha s - \beta(t-s)]^2(t-s)^{-\alpha \beta - 2} \, ds < \infty.
\]
Then \((1)\) is oscillatory.

Proof. Assume the contrary. Then \((1)\) has a nonoscillatory solution \(x(t)\). Without loss of generality, we may assume \(x(t) \neq 0\) for \(t \geq t_0\). Define \(\omega(t) = x'(t)/x(t)\). Then it follows from \((1)\) that
\[
\omega'(t) + \omega^2(t) + p(t)\omega(t) + q(t) = 0.
\]
Hence
\[
\int_{t_0}^{t} (t-s)^{-\alpha \beta} \omega'(s) \, ds + \int_{t_0}^{t} (t-s)^{-\alpha \beta} \omega^2(s) \, ds
\]
\[
+ \int_{t_0}^{t} (t-s)^{-\alpha \beta} p(s) \omega(s) \, ds + \int_{t_0}^{t} (t-s)^{-\alpha \beta} q(s) \, ds \leq 0.
\]

Noting that
\[
\int_{t_0}^{t} (t-s)^{-\alpha \beta} \omega'(s) \, ds = \alpha \int_{t_0}^{t} (t-s)^{-\alpha - 1} \beta \omega(s) \, ds - \beta \int_{t_0}^{t} (t-s)^{-\alpha \beta - 1} \omega(s) \, ds
\]
\[
- \omega(t_0)(t-t_0)^{-\alpha \beta} t_0^\beta,
\]
we obtain
\[
\int_{t_0}^{t} (t-s)^{-\alpha \beta} q(s) \, ds \leq \omega(t_0)(t-t_0)^{-\alpha \beta} t_0^\beta - \int_{t_0}^{t} (t-s)^{-\alpha \beta} \omega^2(s) \, ds
\]
\[
- \int_{t_0}^{t} [(t-s)p(s)s + \alpha s - \beta(t-s)](t-s)^{-\alpha - 1} \beta \omega(s) \, ds.
\]
Dividing by t^α and taking the upper limit as $t \to \infty$, we get

\[
\limsup_{t \to \infty} t^{-\alpha} \int_{t_0}^{t} (t - s)^{\alpha} q(s) \, ds = \omega(t_0) t^\beta + \limsup_{t \to \infty} \frac{t^{-\alpha}}{4} \int_{t_0}^{t} \left[\left((t - s)s + \alpha s - \beta(t - s) \right) \left((t - s)^{\alpha/2} s^{\beta/2} \omega(s) \right) \right. \\
- \liminf_{t \to \infty} t^{-\alpha} \int_{t_0}^{t} \left((t - s)^{\alpha/2} s^{\beta/2} \omega(s) \right) \\
\left. + \frac{1}{2} \left((t - s)s + \alpha s - \beta(t - s) \right) (t - s)^{(\alpha - 2)/2} s^{(\beta - 2)/2} \right) \, ds < \infty,
\]

which contradicts conditions (2) and (3). This completes the proof.

Let \(p(t) = 0 \). Then (3) is satisfied automatically. Thus we have

Corollary 1. Suppose for some \(\alpha \in (1, \infty) \) and \(\beta \in [0, 1) \), (2) is satisfied. Then (1) is oscillatory.

Remark 1. Corollary 1 improves and generalizes Kamenev's theorem [4].

From the proof of the theorem, we easily obtain the following extension to (1)'.

Corollary 2. Suppose \(f'(x) \) exists and \(f'(x) \geq k > 0 \) for some constant \(k \) and for all \(x \neq 0 \). If (2) and (3) hold, then (1)' is oscillatory.

Taking \(\alpha = n - 1 \), \(\beta = 0 \) in (2) and (3), we get

Corollary 3. Suppose (4) is satisfied. If

\[
(2)' \quad \limsup_{t \to \infty} t^{1-n} \int_{t_0}^{t} (t - s)^{n-1} q(s) \, ds = \infty
\]

and

\[
(3)' \quad \limsup_{t \to \infty} t^{1-n} \int_{t_0}^{t} \left[(t - s) p(s) + (n - 1) \right] (t - s)^{n-3} ds < \infty
\]

for some \(n > 2 \) (not necessarily integral), then (1)' is oscillatory.

Remark 2. Corollary 3 includes Kamenev's [4] and Yeh's theorem [7 and 8].

As an example, the equation

\[
(5) \quad x''(t) + \frac{\sin t}{t^\mu} x'(t) + \frac{\cos t}{t^\nu} x(t) = 0, \quad 1 \leq \mu < \infty, \ 0 \leq \nu < 1.
\]

Taking \(\alpha = 2, \nu < \beta < 1 \), we easily verify that all conditions of our theorem are satisfied. Hence, (5) is oscillatory. However, each of the criteria in [4, 7 and 8] fail to apply to (5). On the other hand, (5) cannot be reduced to a form in which some other known results may be used.

We could establish corresponding theorems by the method that is used in this note, which would improve other results of [8].

Acknowledgements. I would like to thank the referee for his valuable comments. I would also like to thank Professor George W. Johnson for his generous help during my stay at the University of South Carolina.
REFERENCES

DEPARTMENT OF MATHEMATICS, SHANXI UNIVERSITY, TAIYUAN, SHANXI, PEOPLE’S REPUBLIC OF CHINA

(CURRENT ADDRESS)

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SOUTH CAROLINA 29208