Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Quand l'espace des mesures à variation bornée est-il faiblement séquentiellement complet?


Author: Michel Talagrand
Journal: Proc. Amer. Math. Soc. 90 (1984), 285-288
MSC: Primary 46B99; Secondary 46E27
DOI: https://doi.org/10.1090/S0002-9939-1984-0727251-1
MathSciNet review: 727251
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a Banach lattice $ E$ which does not contain $ {c_0}$ (hence is weakly sequentially complete), but such that the lattice of $ E$-valued measures of bounded variation contains $ {c_0}$.


References [Enhancements On Off] (What's this?)

  • [1] James Hagler, A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), no. 3, 289–308. MR 0442651
  • [2] M. Talagrand, Weak Cauchy sequences in $ {L^1}(E)$, Amer. J. Math. (àparaître).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B99, 46E27

Retrieve articles in all journals with MSC: 46B99, 46E27


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0727251-1
Keywords: Weakly sequentially complete, Banach lattice, space of measures
Article copyright: © Copyright 1984 American Mathematical Society