Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Surjectivity of $ \varphi $-accretive operators


Authors: Jong An Park and Sehie Park
Journal: Proc. Amer. Math. Soc. 90 (1984), 289-292
MSC: Primary 47H15
DOI: https://doi.org/10.1090/S0002-9939-1984-0727252-3
MathSciNet review: 727252
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ and $ Y$ be Banach spaces, $ \phi :X \to {Y^ * }$ and $ P:X \to Y:$; $ P$ is said to be strongly $ \phi $-accretive if $ \langle Px - Py,\;\phi \left( {x - y} \right)\rangle \geqslant c{\vert\vert {x - y} \vert\vert^2}$ for some $ c > 0$ and each $ x$, $ y \in X$. These maps constitute a generalization simultaneously of monotone maps (when $ Y = {X^ * }$) and accretive maps (when $ Y = X$). By applying the Caristi-Kirk fixed point theorem, W. O. Ray showed that a localized class of these maps must be surjective under appropriate geometric assumptions on $ {Y^ * }$ and continuity assumptions on the duality map. In this paper we show that such geometric assumptions can be removed without affecting the conclusion of Ray.


References [Enhancements On Off] (What's this?)

  • [1] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., Vol. 18, Amer. Math. Soc., Providence, R.I., 1976. MR 0405188 (53:8982)
  • [2] -, Normal solvability and existence theorems for nonlinear mappings in Banach spaces, Problems in Nonlinear Analysis, Edizioni Cremonese, Rome, Italy, 1971, pp. 19-35. MR 0467430 (57:7288)
  • [3] -, Normal solvability for nonlinear mappings and the geometry of Banach spaces, Problems in Nonlinear Analysis, Edizioni Cremonese, Rome, Italy, 1971, pp. 37-66. MR 0438201 (55:11119)
  • [4] -, Normal solvability and $ \phi $-accretive mappings of Banach spaces, Bull. Amer. Math. Soc. 78 (1972), 186-192. MR 0306992 (46:6113)
  • [5] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251. MR 0394329 (52:15132)
  • [6] I. Ekeland, Sur les problemes variationnels, C. R. Acad. Sci. Paris 275 (1972), 1057-1059. MR 0310670 (46:9768)
  • [7] W. A. Kirk, Caristi's fixed point theorem and the theory of normal solvability, Proc. Conf. Fixed Point Theory and its Applications (Dalhousie Univ., June 1975), Academic Press, 1976, pp. 109-120. MR 0454754 (56:13002)
  • [8] W. O. Ray, Phi-accretive operators and Ekeland's theorem, J. Math. Anal. Appl. 88 (1982), 566-571. MR 667080 (84d:47069)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H15

Retrieve articles in all journals with MSC: 47H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0727252-3
Keywords: Strongly $ \phi $-accretive, locally strongly $ \phi $-accretive, strongly upper semicontinuous
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society