Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Removable singularities for $ n$-harmonic functions and Hardy classes in polydiscs

Author: David Singman
Journal: Proc. Amer. Math. Soc. 90 (1984), 299-302
MSC: Primary 32D20; Secondary 32A35
MathSciNet review: 727254
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \phi $ be any strongly convex function. For an open subset $ G$ of a polydisc $ {U^n}$ the Hardy class $ {H_\phi }\left( G \right)$ is the set of analytic functions $ f$ on $ G$ for which $ \phi \circ \log \left\vert f \right\vert$ has an $ n$-harmonic majorant. It is shown that $ {H_\phi }\left( {{U^n} \setminus E} \right) = {H_\phi }\left( {{U^n}} \right)$ for any relatively closed $ n$-negligible subset $ E$ of $ {U^n}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32D20, 32A35

Retrieve articles in all journals with MSC: 32D20, 32A35

Additional Information

Keywords: Polydisc, $ n$-superharmonic function, $ {H_\phi }$ class, Brelot space, $ n$-negligible set
Article copyright: © Copyright 1984 American Mathematical Society