Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the topological degree at a critical point of mountainpass-type


Author: Helmut Hofer
Journal: Proc. Amer. Math. Soc. 90 (1984), 309-315
MSC: Primary 58E05; Secondary 47H15
DOI: https://doi.org/10.1090/S0002-9939-1984-0727256-0
MathSciNet review: 727256
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we will show that the local degree at an isolated critical point given by the Ambrosetti-Rabinowitz mountainpass-theorem is $ - 1$ for a large class of functionals. This class includes for example those functionals arising in the study of second order elliptic equations.


References [Enhancements On Off] (What's this?)

  • [1] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory, J. Funct. Anal. 14 (1973), 343-381. MR 0370183 (51:6412)
  • [2] H. Amann, A note on the degree theory for gradient mappings, Proc. Amer. Math. Soc. 84 (1982), 591-595. MR 660610 (83i:47069)
  • [3] P. H. Rabinowitz, A note on the topological degree for potential operators, J. Math. Anal. Appl. 51 (1975), 483-492. MR 0470773 (57:10518)
  • [4] H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann. 261 (1982), 493-514. MR 682663 (84g:58030)
  • [5] E. H. Rothe, A relation between the type numbers of a critical point and the index of the corresponding field of gradient vectors, Math. Nachr. 4 (1951), 12-27. MR 0040597 (12:720c)
  • [6] A. Manes and A. M. Micheletti, Un'extensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. 7 (1973), 285-301. MR 0344663 (49:9402)
  • [7] P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with indefinite weight function, Comm. Partial Differential Equations 5 (1980), 999-1030. MR 588690 (81m:35102)
  • [8] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, in eigenvalues of nonlinear problems (G. Prodi, Ed.), C.I.M.E. Edizione Cremonese, Rome, 1975, pp. 141-195. MR 0464299 (57:4232)
  • [9] D. Gromoll and W. Meyer, On differentiable functions with isolated critical points, Topology 8 (1969), 361-369. MR 0246329 (39:7633)
  • [10] F. Takens, A note on sufficiency of jets, Invent. Math. 13 (1971), 225-231. MR 0293649 (45:2726)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58E05, 47H15

Retrieve articles in all journals with MSC: 58E05, 47H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0727256-0
Keywords: Critical point theory, Leray-Schauder degree, nonlinear functional analysis
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society