CORRECTIONS AND ADDITIONS TO
“A GENERALIZATION OF A THEOREM OF AYOUB AND CHOWLA”

DON REDMOND

Let \(\chi_1 \) and \(\chi_2 \) be characters modulo \(q_1 \) and \(q_2 \), respectively, and let

\[
f(n) = \sum_{d|n} \chi_1(d) \chi_2(n/d).
\]

In [3], I estimated the sum

\[
\sum_{n \leq x} f(n) \log(x/n).
\]

Unfortunately, as was pointed out to me in a letter by A. Ivic of Beograd, the error term claimed in [3] is incorrect. The error lies in the estimate (3.14) and the best that one can claim is

\[
\sum_{n \leq x} f(n) \log(x/n) = C_1(\chi_1, \chi_2) x \log x + C_2(\chi_1, \chi_2) x + C_3(\chi_1, \chi_2) \log x
\]

\[
+ C_4(\chi_1, \chi_2) + O(x^{-1/4}),
\]

as \(x \to +\infty \), where the constants \(C_j(\chi_1, \chi_2) \), \(1 \leq j \leq 4 \), are as stated in [3]. This error term is the same as obtained in [1 and 2], however, we still have achieved a uniform calculation of the constants \(C_j(\chi_1, \chi_2) \), \(1 \leq j \leq 4 \).

Let \(k \geq 2 \) be a positive integer. Then another generalization is to consider \(k \) characters \(\chi_j \) of modulus \(q_j \), \(1 \leq j \leq k \), and let

\[
f_k(n) = \sum_{d_1\cdots d_k=n} \chi_1(d_1) \cdots \chi_k(d_k).
\]

Then, in the same way as above, I obtain

\[
\sum_{n \leq x} f_k(n) \log^{k-1}(x/n) = xP_{1,k-1}(\log x) + P_{2,k-1}(\log x) + O(x^{-(k-1)/2k}),
\]

where \(P_{1,k-1}(u) \) and \(P_{2,k-1}(u) \) are polynomials of degree \(k - 1 \), which arise is the calculation of the residues. Indeed, if

\[
F_k(s) = \sum_{n=1}^{+\infty} f_k(n)n^{-s},
\]
then
\[xP_{1,k-1}(\log x) = \text{res}(x^sF_k(s)s^{-k}, s = 1) \]
and
\[P_{2,k-1}(\log x) = \text{res}(x^sF_k(s)s^{-k}, s = 0). \]

The actual calculation would be carried out in the same manner as in §§3 and 4 of [3].

The case \(q_1 = \cdots = q_2 = 1 \), that is, when \(f_k(n) = d_k(n) \), the \(k \)-fold divisor function, was obtained by A. Ivic and mentioned in the letter referred to above. It was his result that suggested this generalization to me.

References

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901