Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Atriodic acyclic continua and class $ W$


Author: James F. Davis
Journal: Proc. Amer. Math. Soc. 90 (1984), 477-482
MSC: Primary 54F20; Secondary 54C10
DOI: https://doi.org/10.1090/S0002-9939-1984-0728372-X
MathSciNet review: 728372
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A continuum $ M$ is in class $ W$ provided that for each continuum $ Y$ and mapping $ f$ of $ Y$ onto $ M$, each subcontinuum of $ M$ is the image under $ f$ of some subcontinuum of $ Y$. It is shown that atriodic continua with trivial first Čech cohomology are in class $ W$.


References [Enhancements On Off] (What's this?)

  • [1] J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960), 73-84. MR 0111000 (22:1868)
  • [2] W. Dwayne Collins, A property of atriodic continua, Illinois J. Math. (to appear). MR 748956 (86a:54040)
  • [3] James F. Davis, Zero span continua, doctoral dissertation, University of Houston, 1981.
  • [4] J. Grispolakis and E. D. Tymchatyn, Weakly confluent mappings and the covering property of hyperspaces, Proc. Amer. Math. Soc. 74 (1979), 177-182. MR 521894 (80d:54041)
  • [5] -, Continua which are images of weakly confluent mappings only. I, Houston J. Math. 5 (1979), 483-502. MR 567908 (81d:54008)
  • [6] -, Continua which are images of weakly confluent mappings only. II, Houston J. Math. 6 (1980), 375-387. MR 597777 (82h:54052)
  • [7] W. T. Ingram, $ C$-sets and mappings of continua, Topology Proc. 7 (1982), 83-90. MR 696623 (85i:54040)
  • [8] -, Atriodic tree-like continua and the span of mappings, Topology Proc. 1 (1976), 329-333.
  • [9] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R.I., 1962. MR 0150722 (27:709)
  • [10] D. R. Read, Confluent and related mappings, Colloq. Math. 29 (1974), 233-239. MR 0367903 (51:4145)
  • [11] R. H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944), 439-460. MR 0010968 (6:96d)
  • [12] William T. Watkins, Homeomorphic classification of inverse limit spaces with fixed open bonding maps, doctoral dissertation, University of Wyoming, 1980.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F20, 54C10

Retrieve articles in all journals with MSC: 54F20, 54C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0728372-X
Keywords: Class $ W$, weakly confluent mappings, atriodic continua, acyclic continua
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society