Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Immersions of highly connected manifolds


Author: Reinhard Wiegmann
Journal: Proc. Amer. Math. Soc. 90 (1984), 483-484
MSC: Primary 57R42; Secondary 55Q52
DOI: https://doi.org/10.1090/S0002-9939-1984-0728373-1
MathSciNet review: 728373
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ [{M^n}\looparrowright{{\mathbf{R}}^{2n - k}}]$ denotes the set of regular homotopy classes of immersions, $ {M^n}$ a $ k$-connected compact manifold, we show by a direct geometric construction the correspondence $ [{M^n}\looparrowright{{\bf {R}}^{2n - k}}] \to [{S^n}\looparrowright{{\bf {R}}^{2n - k}}]$ for $ 0 \le 2k \le n - 2$.


References [Enhancements On Off] (What's this?)

  • [1] A. Haefliger, Plongements differentiables des variétés dans variétés, Comment. Math. Helv. 36 (1962). MR 0145538 (26:3069)
  • [2] A. Haefliger and M. W. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963). MR 0149494 (26:6981)
  • [3] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 0119214 (22:9980)
  • [4] U. Koschorke and B. Sanderson, Geometric interpretation of the generalized Hopf invariant, Math. Scand. 41 (1977). MR 0474289 (57:13936)
  • [5] M. Kervaire, Sur l'invariant de Smale d'un plongement, Comment. Math. Helv. 34 (1960). MR 0113230 (22:4068)
  • [6] C. Olk, Immersionen von Mannigfaltigkeiten in euklidische Räume, Dissertation, Siegen, 1980.
  • [7] S. Smale, The classification of immersions of spheres in Euclidean space, Ann. of Math. (2) 69 (1959), 327-344. MR 0105117 (21:3862)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R42, 55Q52

Retrieve articles in all journals with MSC: 57R42, 55Q52


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0728373-1
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society