Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Immersions of highly connected manifolds


Author: Reinhard Wiegmann
Journal: Proc. Amer. Math. Soc. 90 (1984), 483-484
MSC: Primary 57R42; Secondary 55Q52
DOI: https://doi.org/10.1090/S0002-9939-1984-0728373-1
MathSciNet review: 728373
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ [{M^n}\looparrowright{{\mathbf{R}}^{2n - k}}]$ denotes the set of regular homotopy classes of immersions, $ {M^n}$ a $ k$-connected compact manifold, we show by a direct geometric construction the correspondence $ [{M^n}\looparrowright{{\bf {R}}^{2n - k}}] \to [{S^n}\looparrowright{{\bf {R}}^{2n - k}}]$ for $ 0 \le 2k \le n - 2$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R42, 55Q52

Retrieve articles in all journals with MSC: 57R42, 55Q52


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0728373-1
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society