Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The very well poised $ \sb{6}\psi \sb{6}$. II


Author: Richard Askey
Journal: Proc. Amer. Math. Soc. 90 (1984), 575-579
MSC: Primary 33A35
DOI: https://doi.org/10.1090/S0002-9939-1984-0733409-8
MathSciNet review: 733409
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A proof of Bailey's sum of the very well poised $ _6{\psi _6}$ series is obtained from a simple difference equation and special cases that are easy to evaluate.


References [Enhancements On Off] (What's this?)

  • [1] G. Andrews, Applications of basic hypergeometric series, SIAM Rev. 16 (1974), 441-484. MR 0352557 (50:5044)
  • [2] G. Andrews and R. Askey, Enumeration of partitions: the role of Eulerian series and $ q$-orthogonal polynomials, Higher Combinatorics (M. Aigner, ed.), Reidel, Dordrecht and Boston, Mass., 1977, pp. 3-26. MR 519776 (80b:10021)
  • [3] R. Askey, Ramanujan's extensions of the gamma and beta functions, Amer. Math. Monthly 87 (1980), 346-359. MR 567718 (82g:01030)
  • [4] -, An elementary evaluation of a beta type integral, Indian J. Pure Appl. Math. 14 (1983), 892-895. MR 714840 (84k:33003)
  • [5] R. Askey and M. E.-H. Ismail, The very well poised $ _6{\psi _6}$, Proc. Amer. Math. Soc. 77 (1979), 218-222. MR 542088 (80m:33002)
  • [6] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. (to appear). MR 783216 (87a:05023)
  • [7] W. N. Bailey, Series of hypergeometric type which are infinite in both directions, Quart. J. Math. Oxford Ser. 7 (1936), 105-115.
  • [8] M. E.-H. Ismail, A simple proof of Ramanujan's $ _1{\psi _1}$ sum, Proc. Amer. Math. Soc. 63 (1977), 185-186. MR 0508183 (58:22695)
  • [9] S. Ramanujan, Notebooks of Srinivasa Ramanujan, Vol. 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904 (20:6340)
  • [10] L. J. Slater and A. Lakin, Two proofs of the $ _6{\psi _6}$ summation theorem, Proc. Edinburgh Math. Soc. (2) 9 (1953-57), 116-121. MR 0084600 (18:888b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33A35

Retrieve articles in all journals with MSC: 33A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0733409-8
Keywords: Basic hypergeometric series
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society