The very well poised . II
Author:
Richard Askey
Journal:
Proc. Amer. Math. Soc. 90 (1984), 575579
MSC:
Primary 33A35
MathSciNet review:
733409
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A proof of Bailey's sum of the very well poised series is obtained from a simple difference equation and special cases that are easy to evaluate.
 [1]
George
E. Andrews, Applications of basic hypergeometric functions,
SIAM Rev. 16 (1974), 441–484. MR 0352557
(50 #5044)
 [2]
George
E. Andrews and Richard
Askey, Enumeration of partitions: the role of Eulerian series and
𝑞orthogonal polynomials, Higher combinatorics (Proc. NATO
Advanced Study Inst., Berlin, 1976), NATO Adv. Study Inst. Ser., Ser. C:
Math. Phys. Sci., vol. 31, Reidel, DordrechtBoston, Mass., 1977,
pp. 3–26. MR 519776
(80b:10021)
 [3]
Richard
Askey, Ramanujan’s extensions of the gamma and beta
functions, Amer. Math. Monthly 87 (1980), no. 5,
346–359. MR
567718 (82g:01030), http://dx.doi.org/10.2307/2321202
 [4]
Richard
Askey, An elementary evaluation of a beta type integral,
Indian J. Pure Appl. Math. 14 (1983), no. 7,
892–895. MR
714840 (84k:33003)
 [5]
Richard
Askey and Mourad
E. H. Ismail, The very well poised
₆𝜓₆, Proc. Amer. Math.
Soc. 77 (1979), no. 2, 218–222. MR 542088
(80m:33002), http://dx.doi.org/10.1090/S00029939197905420882
 [6]
Richard
Askey and James
Wilson, Some basic hypergeometric orthogonal polynomials that
generalize Jacobi polynomials, Mem. Amer. Math. Soc.
54 (1985), no. 319, iv+55. MR 783216
(87a:05023), http://dx.doi.org/10.1090/memo/0319
 [7]
W. N. Bailey, Series of hypergeometric type which are infinite in both directions, Quart. J. Math. Oxford Ser. 7 (1936), 105115.
 [8]
Mourad
E. H. Ismail, A simple proof of Ramanujan’s
₁𝜓₁ sum, Proc. Amer.
Math. Soc. 63 (1977), no. 1, 185–186. MR 0508183
(58 #22695), http://dx.doi.org/10.1090/S00029939197705081837
 [9]
Srinivasa
Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of
Fundamental Research, Bombay, 1957. MR 0099904
(20 #6340)
 [10]
L.
J. Slater and A.
Lakin, Two proofs of the ₆Ψ₆ summation
theorem, Proc. Edinburgh Math. Soc. (2) 9 (1956),
116–121. MR 0084600
(18,888b)
 [1]
 G. Andrews, Applications of basic hypergeometric series, SIAM Rev. 16 (1974), 441484. MR 0352557 (50:5044)
 [2]
 G. Andrews and R. Askey, Enumeration of partitions: the role of Eulerian series and orthogonal polynomials, Higher Combinatorics (M. Aigner, ed.), Reidel, Dordrecht and Boston, Mass., 1977, pp. 326. MR 519776 (80b:10021)
 [3]
 R. Askey, Ramanujan's extensions of the gamma and beta functions, Amer. Math. Monthly 87 (1980), 346359. MR 567718 (82g:01030)
 [4]
 , An elementary evaluation of a beta type integral, Indian J. Pure Appl. Math. 14 (1983), 892895. MR 714840 (84k:33003)
 [5]
 R. Askey and M. E.H. Ismail, The very well poised , Proc. Amer. Math. Soc. 77 (1979), 218222. MR 542088 (80m:33002)
 [6]
 R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. (to appear). MR 783216 (87a:05023)
 [7]
 W. N. Bailey, Series of hypergeometric type which are infinite in both directions, Quart. J. Math. Oxford Ser. 7 (1936), 105115.
 [8]
 M. E.H. Ismail, A simple proof of Ramanujan's sum, Proc. Amer. Math. Soc. 63 (1977), 185186. MR 0508183 (58:22695)
 [9]
 S. Ramanujan, Notebooks of Srinivasa Ramanujan, Vol. 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904 (20:6340)
 [10]
 L. J. Slater and A. Lakin, Two proofs of the summation theorem, Proc. Edinburgh Math. Soc. (2) 9 (195357), 116121. MR 0084600 (18:888b)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
33A35
Retrieve articles in all journals
with MSC:
33A35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198407334098
PII:
S 00029939(1984)07334098
Keywords:
Basic hypergeometric series
Article copyright:
© Copyright 1984
American Mathematical Society
