TWO RESULTS CONCERNING CARDINAL FUNCTIONS ON COMPACT SPACES

I. JUHÁSZ AND Z. SZENTMIKLÓSSY

Abstract. We show that for X compact T_2: (i) $d(X) \leq s(X) \cdot \hat{F}(X)$; (ii) if the pair $(\kappa, \hat{F}(X))$ is a caliber of X then $\pi(X) < \kappa$.

These strengthen results of Šapirovskii from [3 and 5], respectively. Moreover, (i) settles a problem raised in [2] implying that there are no compact T_2 κ-examples for any singular cardinal κ.

In this note we follow the notation and terminology of [1]. In particular, we let $\hat{F}(X)$ denote the smallest cardinal κ such that $|S| < \kappa$ for any free sequence $S \subseteq X$.

Theorem 1. If X is compact T_2 then $d(X) \leq s(X) \cdot \hat{F}(X)$.

Proof. Let us put $s(X) \cdot \hat{F}(X) = \kappa$. Given any nonempty open set $U \subseteq X$ we can choose a family $\mathcal{C}(U)$ of open F_σ sets in X such that $U = \bigcup \mathcal{C}(U)$. But X does not contain discrete subspaces of cardinality κ^+, hence, e.g. by 2.13 of [1], there is a subfamily $\mathcal{B}(U) \subseteq \mathcal{C}(U)$ and a subset $S(U) \subseteq U$ such that $|\mathcal{B}(U)| \leq \kappa$, $|S(U)| \leq \kappa$ and $U \subseteq \bigcup \mathcal{B}(U) \cup S(U)$.

Let us now assume, indirectly, that $d(X) > \kappa$. Then we also have $\pi(X) > \kappa$. Hence if \mathcal{H} is a family of nonempty closed G_δ sets in X with $|\mathcal{H}| \leq \kappa$, then there is an open nonempty $U \subseteq X$ such that $A \setminus U \neq \emptyset$ for each $A \in \mathcal{H}$. It follows easily from the compactness of X that if \mathcal{U} is a chain of open sets with this property, then $\bigcup \mathcal{U}$ possesses it as well. Thus by Zorn's lemma, we can fix an open set $W(H)$ which is maximal with respect to the above property. Observe that then for every nonempty set H open in $X \setminus W(H)$, there is an $A \in \mathcal{H}$ with $A \subseteq H \cup W(H)$. Hence $\emptyset \neq A \setminus W(H) \subseteq H$, i.e. $\{A \setminus W(H) : A \in \mathcal{H}\}$ is a π-network in $X \setminus W(H)$. Consequently, we have

$$d(X \setminus W(H)) \leq |\mathcal{H}| \leq \kappa.$$

After these preparations we define by transfinite induction, families \mathcal{B}_α of closed G_δ subsets of X for $\alpha \in \kappa$ with $|\mathcal{B}_\alpha| \leq \kappa$ as follows. If $\alpha \in \kappa$ and \mathcal{B}_β has been defined for all $\beta < \alpha$, we consider the open set $W_\alpha = W\left(\bigcup \{\mathcal{B}_\beta : \beta < \alpha\}\right)$ and the family $\mathcal{B}(W_\alpha)$ of open F_σ subsets of W_α. For every $G \in \mathcal{B}(W_\alpha)$ we may then choose closed G_δ sets F^α_G for $n \in \omega$ such that $G = \bigcup \{F^\alpha_G : n \in \omega\}$. \mathcal{B}_α is then defined as the set of all nonempty finite intersections of members of the family

$$\bigcup \{\mathcal{B}_\beta : \beta < \alpha\} \cup \{X \setminus G : G \in \mathcal{B}(W_\alpha)\} \cup \{F^\alpha_G : G \in \mathcal{B}(W_\alpha), n \in \omega\}.$$

Received by the editors January 31, 1983.

1980 Mathematics Subject Classification. Primary 54A25, 54D30.
Clearly $|S_\alpha| \leq \kappa$. This completes the induction.

Let us put

$$Y = \bigcup \{ S(W_\alpha) \cup (X \setminus W_\alpha) : \alpha \in \kappa \};$$

since $|S(W_\alpha)| \leq \kappa$ and $d(X \setminus W_\alpha) \leq \kappa$, then $d(Y) \leq \kappa$ as well; hence, by our indirect assumption, $X \neq Y$.

We may thus pick a point $p \in X \setminus Y$. Then for every $\alpha \in \kappa$ there are $G_\alpha \in \mathcal{B}(W_\alpha)$ and $n_\alpha \in \omega$ such that $p \in F_\alpha = F_{G_\alpha}^n \subset G_\alpha$. Let us put, for $\alpha \in \kappa$,

$$L_\alpha = \{ F_\beta : \beta \leq \alpha \} \cup \{ X \setminus G_\beta : \alpha < \beta < \kappa \}.$$

We claim that L_α is centered. Indeed, if $\mathcal{L} \in [L_\alpha]^\omega$, then $\bigcap \mathcal{L} \neq \emptyset$ follows by an easy induction on the number of the $X \setminus G_\beta$'s in \mathcal{L} from our above construction.

Since the members of L_α are closed and nonempty, we can pick for each $\alpha \in \kappa$ a point $p_\alpha \in \bigcap L_\alpha$. But then $\{ p_\beta : \beta \in \alpha \} \subset X \setminus G_\alpha$ and $\{ p_\beta : \beta \in \kappa \setminus \alpha \} \subset F_\alpha$; hence

$$\{ p_\beta : \beta \in \alpha \} \cap \{ p_\beta : \beta \in \kappa \setminus \alpha \} = \emptyset.$$

This, however is a contradiction since $\{ p_\alpha : \alpha \in \kappa \}$ is a free sequence in X of size $\kappa \geq \hat{\mathcal{F}}(X)$. Hence our proof is completed.

Theorem 1 is a strengthening of Šapirovskii's result saying that

$$d(X) \leq s(X) \cdot t(X),$$

for X compact T_2, since, as is well known (see e.g. [1, 3.12]), for X compact T_2 we have $F(X) = t(X)$. However the proofs of this given in [3, 4 or 1] do not seem to be modifiable to yield our result for the case in which $s(X) \cdot \hat{\mathcal{F}}(X) = \kappa$ is a singular cardinal. That this case is of some independent interest is shown by the following result that solves a problem raised in [2] (and answered there only partially even for the case $\text{cf}(\kappa) \leq \omega_1$).

Corollary. If X is compact T_2, κ is a singular cardinal, and $\pi(Y) < \kappa$ holds for each subspace $Y \subset X$ with $|Y| \leq \kappa$, then $\pi(X) < \kappa$ as well (or in the terminology of [2] there are no compact T_2 κ-examples).

Proof. Clearly X may have no discrete subspaces of cardinality κ. Hence we have $d(X) \leq s(X) \cdot \hat{\mathcal{F}}(X) \leq \kappa$. But if $Y \subset X$ is dense with $|Y| \leq \kappa$, then by our assumption and 2.7 of [1], $\pi(X) = \pi(Y) < \kappa$.

To formulate our next result we recall that a pair $\langle \kappa, \lambda \rangle$ of cardinals is said to be a caliber of a space X if for every family $\{ G_\xi : \xi \in \kappa \}$ of nonempty open sets in X there is a set $A \subset \kappa$ with $|A| = \lambda$ such that $\bigcap \{ G_\xi : \xi \in A \} \neq \emptyset$.

Theorem 2. If X is compact T_2 and the pair $\langle \kappa, \hat{\mathcal{F}}(X) \rangle$ is a caliber of X, then $\pi(X) < \kappa$.

Proof. Since the proof is quite similar to, but actually even simpler than, that of Theorem 1, we give only a sketch.

First, for any nonempty open set $U \subset X$ we fix a family $\mathcal{C}(U)$ of open F_α's in X whose union is U. Second, assuming indirectly that $\pi(X) \geq \kappa$ and using that $\kappa > \omega$, for any family \mathcal{A} of nonempty closed G_δ's with $|\mathcal{A}| < \kappa$, we pick a nonempty open F_α.
set \(W(\alpha) \) such that \(A \setminus W(\alpha) \neq \emptyset \) for all \(A \in \mathcal{C} \). Then, by transfinite induction, families \(\mathfrak{B}_\alpha \) of nonempty closed \(G_\delta \) sets with \(|\mathfrak{B}_\alpha| \leq |\alpha| + \omega < \kappa \) are defined for \(\alpha \in \kappa \) as follows. If \(\alpha \in \kappa \) and \(\mathfrak{B}_\beta \) have been chosen for \(\beta \in \alpha \), put

\[
W_\alpha = W\left(\bigcup \{\mathfrak{B}_\beta : \beta \in \alpha\} \right).
\]

We can write

\[
W_\alpha = \bigcup \{F_\alpha^n : n \in \omega\},
\]

where the \(F_\alpha^n \) are closed \(G_\delta \) sets in \(X \). Now, \(\mathfrak{B}_\alpha \) is defined as the set of all nonempty finite intersections of members of the family

\[
\bigcup \{\mathfrak{B}_\beta : \beta \in \alpha\} \cup \{X \setminus W_\alpha\} \cup \{F_\alpha^n : n \in \omega\}.
\]

Clearly, \(|\mathfrak{B}_\alpha| \leq |\alpha| + \omega \).

Considering the family \(\{W_\alpha : \alpha \in \kappa\} \) and using that, with \(\lambda = \check{\pi}(X) \), the pair \(\langle \kappa, \lambda \rangle \) is a caliber of \(X \), we can find a set \(A \subset \kappa \) with \(|A| = \lambda \) such that

\[
\bigcap \{W_\alpha : \alpha \in A\} \neq \emptyset.
\]

Let \(p \in \bigcap \{W_\alpha : \alpha \in A\} \), and for each \(\alpha \in A \) choose \(n_\alpha \in \omega \) such that \(p \in F_\alpha^{n_\alpha} = F_\alpha \subset W_\alpha \). Exactly as in the proof of Theorem 1 we can see that for \(\alpha \in A \) the family

\[
\mathcal{L}_\alpha = \{F_\beta : \beta \in A \& \beta \leq \alpha\} \cup \{X \setminus W_\beta : \beta \in A \& \alpha < \beta\}
\]

is centered, and if \(p_\alpha \in \bigcap \mathcal{L}_\alpha \) for \(\alpha \in A \), then \(\{p_\alpha : \alpha \in A\} \) is a free sequence in \(X \) of size \(\lambda = \check{\pi}(X) \), a contradiction. This completes the proof.

In [5] Šapirovskii proved that if \(t(X)^+ \) is a caliber of a compact \(T_2 \) space \(X \) then \(\pi(X) \leq t(X) \). Since \(\check{\pi}(X) \leq F(X)^+ = t(X)^+ \) and, moreover, if \(F(X)^+ \) is a caliber of \(X \), clearly so is the pair \(\langle F(X)^+, \check{F}(X) \rangle \) as well, this result is an immediate corollary of Theorem 2.

REFERENCES

MATHEMATICAL INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES, RÉÁLTANODA 13–15, BUDAPEST 1479 PF 128, HUNGARY