A TOPOLOGICAL SPACE WITHOUT A COMPLETE QUASI-UNIFORMITY

HANS-PAUL C. KÜNZI1 AND PETER FLETCHER

Abstract. We show that an example of Burke and van Douwen has no complete quasi-uniformity. Moreover, we show that it is almost finitely-fully normal but not almost S_0-fully normal.

0. Introduction. Every topological space admits a quasi-uniformity. The problem whether every topological space admits a complete quasi-uniformity is considered in [3, Problem C], where an example is given of a T_1-space that admits a complete, but no convergence complete, quasi-uniformity. In this note we show that a locally compact separable normal M-space of D. K. Burke and E. K. van Douwen admits no complete quasi-uniformity, thereby answering an old question in the theory of quasi-uniform spaces. Moreover, we show that this space is an almost finitely-fully normal countably paracompact space that is not almost S_0-fully normal. It is interesting to compare these results with the recent results of K. P. Hart [4] that M. E. Rudin’s Dowker space is both orthocompact and finitely-fully normal; for it follows readily from Hart’s results that, while Rudin’s space is not almost K_0-fully normal, it does admit a complete quasi-uniformity.

1. Definitions and a lemma. A quasi-uniformity on a set X is a filter \mathfrak{U} on $X \times X$ such that (a) each member of \mathfrak{U} is a reflexive relation on X, and (b) if $U \in \mathfrak{U}$ then $V \circ V \subseteq U$ for some $V \in \mathfrak{U}$. The pair (X, \mathfrak{U}) is called a quasi-uniform space. A filter \mathfrak{F} on (X, \mathfrak{U}) is a Cauchy filter provided that for each $U \in \mathfrak{U}$ there exists $p \in X$ so that $U(p) \in \mathfrak{F}$, and (X, \mathfrak{U}) is said to be complete provided that every Cauchy filter has a cluster point. The topology $\tau(\mathfrak{U}) = \{G \subseteq X: \text{for each } x \in G \text{ there is } U \in \mathfrak{U} \text{ with } U(x) \subseteq G\}$ is called the topology induced by \mathfrak{U}. A topological space (X, τ) admits \mathfrak{U} provided that τ is the topology induced by \mathfrak{U}. Let (X, τ) be a topological space and let \mathfrak{F} be the collection of reflexive transitive relations V on X for which $V(x) \subseteq \tau$ for all $x \in X$. Then \mathfrak{F} is a filterbase for a quasi-uniformity \mathfrak{U}. Moreover, using the observation of W. J. Pervin [8] that for each open set $G, G \times G \cup (X \setminus G) \times X \in \mathfrak{U}$, we see that (X, τ) admits \mathfrak{U}. It is known that this quasi-uniformity \mathfrak{U} is complete if and only if every ultrafilter on X without a cluster point has a closure-preserving subcollection without a cluster point [3, p. 59]. Consequently, a

Received by the editors February 14, 1983 and in revised form, June 28, 1983.

1980 Mathematics Subject Classification. Primary 54E15, 54D20.

Key words and phrases. Almost S_0-fully normal, almost finitely-fully normal, complete quasi-uniformity.

1While working on this paper, the first author was supported by the Schweizerischer Nationalfonds.

©1984 American Mathematical Society
0002-9939/84 $1.00 + $.25 per page
regular space that is either almost real-compact or weakly orthocompact admits a complete quasi-uniformity.

Throughout, if \(\mathcal{R} \) is a cover of a space \(X \), and \(A \) is a subset of some member of \(\mathcal{R} \), we say that \(A \) is a refiner of \(\mathcal{R} \). A space \(X \) is almost finitely-fully normal (almost \(S_0 \)-fully normal) \([6]\) provided that if \(\mathcal{C} \) is an open cover of \(X \) there is an open refinement \(\mathcal{R} \) of \(\mathcal{C} \) with the property that if \(M \) is a finite (countable) set and \(M \) is a refiner of \(\{st(x, \mathcal{R}) \mid x \in X\} \), then \(M \) is also a refiner of \(\mathcal{C} \).

We begin with a slight extension of a result of G. Aquaro [1] and K. Morita [7, Lemma 4.3].

Lemma 1. A space \(X \) is almost finitely-fully normal (almost \(S_0 \)-fully normal) if and only if \(X \) is normal, and for each open cover \(\mathcal{C} \) of \(X \) there is a locally finite open cover \(\mathcal{R} \) of \(X \) so that if \(M \) is a refiner of \(\mathcal{R} \) and \(M \) is a finite (countable) set, then \(M \) is a refiner of \(\mathcal{C} \).

2. The example. The example \(X \) under consideration is described completely in [2]. For our purposes it is enough to know the following details: The ground set is \(\mu \cup (\omega \times \omega) \), \(\mu \) and \(\omega \) considered disjoint, where \(\mu \) is a regular cardinal, and there is a collection \(F = \{f_\alpha : \alpha \in \mu\} \) such that

1. For each \(\alpha \in \mu \), \(f_\alpha \in \omega^\omega \).
2. Each \(f_\alpha \) is nondecreasing.
3. There is no \(g \in \omega^\omega \) so that \(f_\alpha < *g \) for all \(\alpha \in \mu \).

(As usual, we say \(f < *g \) provided that for all but finitely many \(n \in \omega \), \(f(n) < g(n) \).)

The points of \(\omega \times \omega \) are isolated, and basic open sets about \(\alpha \in \mu \) with \(0 \leq \beta < \alpha < \mu \) and \(m \in \omega \) are of the form
\[
U(\alpha, \beta, m) = (\beta, \alpha] \cup \{\langle k, n \rangle : k \geq m \text{ and } f_\beta(k) < n \leq f_\alpha(k)\}.
\]
If \(\alpha \in \mu \) and \(\alpha = 0 \), basic open sets about \(\alpha \) are of the form
\[
U(0, \beta, m) = \{0\} \cup \{\langle k, n \rangle : k \geq m, n \leq f_0(k)\} \quad \text{where } m \in \omega.
\]

Lemma 2. If \(S \) is a cofinal subset of \(\mu \), then \(A = \{k \in \omega : \langle f(k)\rangle_{s \in S} \text{ is eventually bounded}\} \) is an initial segment of \(\omega \).

Proof. Since each \(f_\alpha \) is nondecreasing, we note that if \(a < b < \omega \) and \(b \in A \), then \(a \in A \). Assume \(A = \omega \). Then for all \(n \in \omega \) there are \(s_n \in S \) and \(k_n \in \omega \) such that if \(s \in S \) and \(s > s_n \) then \(f_s(n) < k_n \). Define \(g : \omega \rightarrow \omega \) by \(g(n) = k_n \). There is a tail \(S' \) of \(S \) such that if \(s \in S' \) then \(f_s(n) < g(n) \) for all \(n \in \omega \). Let \(f_a \in F \). There is an \(s \in S' \) with \(\alpha < s \); by (2), \(f_a < *f_s \), and thus \(f_a < g \). We have shown that (3) fails—a contradiction. \(\blacksquare \)

\(X \) admits no complete quasi-uniformity. For each \(x \in \mu \) and \(m \in \omega \), set \(F(x, m) = \{\langle k, n \rangle : k \geq m \text{ and } f_x(k) < n\} \) and let \(\mathcal{F} \) be the filter for which \(\{F(x, m) : x \in \mu \text{ and } m \in \omega\} \) is a filter base. Clearly no point of \(\omega \times \omega \) is a cluster point of \(\mathcal{F} \). If \(\rho \in \mu \) and \(m \in \omega \), then \(U(\rho, 0, 0) \cap F(\rho, m) = \emptyset \). Therefore \(\mathcal{F} \) is a filter without a cluster point. We show that \(\mathcal{F} \) is a Cauchy filter with respect to each quasi-uniformity that \(X \) admits. Let \(V \) be such a quasi-uniformity, let \(V \in \mathcal{F} \) and let \(W \in \mathcal{F} \) so \(W^2 \subset V \). For
each $x \in \mu$ choose $\beta_x \in \mu$ and $m_x \in \omega$ so that $U(x, \beta_x, m_x) \subset W(x)$. By the Pressing-Down Lemma, there is a cofinal subset S of μ, $\beta \in \mu$ and $j \in \omega$ so that, for all $s \in S$, $U(s, \beta, j) \subset W(s)$. We note that $\beta < s$ for each $s \in S$. Set $A' = \{ k \in \omega: \langle f_s(k) \rangle_{s \in S} \text{ is bounded} \}$. By Lemma 2, A' is finite. There is $e \in \omega$ so that if $k \geq e$ then $\{ f_s(k) : s \in S \}$ is unbounded. Let $r = \max\{ e, j \}$. For each $k \geq r$, define a function $a_k: \omega \to S$ by letting $a_k(n)$ be the least ordinal $\alpha \in S$ so $f_\alpha(k) \geq n$. Let $\gamma = \sup\{ a_k(n) : k \geq e, n \in \omega \}$; there exists $s_0 \in S$ with $\gamma < s_0 < \mu$. Let $k \geq r$ and let $m \in \omega$. Then $a_k(m) \in U(s_0, \beta, j) \subset W(s_0)$ so $W(a_k(m)) \subset W^2(s_0) \subset V(s_0)$. We show that $F(\beta, r) \subset V(s_0)$ so $V(s_0) \subset \mathcal{W}$ as required. Let $\langle k, n \rangle \in F(\beta, r)$. Then $k \geq r \geq j$ and $f_\beta(k) < n \subset \mathcal{W}$. Then $\langle k, n \rangle \in U(a_k(n), \beta, j) \subset W(a_k(n)) \subset V(s_0)$.

Corollary. The space X is not weakly orthocompact. (Indeed, X is a transitive space that is not preorthocompact; see [3, Lemma 6.16 and Corollary 5.11].)

For the nonce, mimicking terminology of E. Hewitt, we say a topological space is q-complete provided it admits a complete quasi-uniformity. In this terminology, Proposition 3.12 of [3] shows that the perfect preimage of a q-complete space is q-complete. The present example shows that this result does not obtain if perfect maps are replaced by quasi-perfect maps.

3. Further properties of the example. X is almost finitely-fully normal. Let \mathcal{B} be an open cover of X. Without loss of generality, we assume that for each $x \in \mu$ there is $B_x \in \mathcal{B}$ of the form $B_x = U(x, \beta_x, m_x)$ and that all remaining members of \mathcal{B} are isolated points. Since μ is a regular cardinal, by the Pressing-Down Lemma, there are a cofinal subset S of μ, $\beta \in \mu$, and $m \in \omega$ so that $\beta_x = \beta$ and $m_x = m$ for all $x \in S$.

Set $S = \{ k \in \omega: \langle f_s(k) \rangle_{s \in S} \text{ is eventually bounded} \}$. By Lemma 2, S is a finite set. Let h be a natural number exceeding $\max(A)$. Set $R = (\beta, \mu) \cup \{ \langle k, n \rangle: k \geq h, m \text{ and } f_\beta(k) < n \}$. Then R is an open set, and since $\mu \setminus R$ is compact there is a finite subset R' of \mathcal{B} so that $\mu \setminus R \subset \cup R'$. Let

$$
\mathcal{R} = \mathcal{B}' \cup \{ R \} \cup \{ \{ x \}: x \not\in \cup (\mathcal{B}' \cup \{ R \}) \}.
$$

Then \mathcal{R} is a locally finite open cover of X. Let M be a finite refiner of \mathcal{R}. By Lemma 1 it suffices to show that M is a refiner of \mathcal{B}. We assume $M \subset R$. Set $M_1 = M \cap \mu$ and set $M_2 = M \cap (\omega \times \omega)$. List the members of M_2 as $\langle k_1, n_1 \rangle$, $\langle k_2, n_2 \rangle$, ..., $\langle k_j, n_j \rangle$, where $k_1 < k_2 < \cdots < k_j$. Let $q = \max\{ n_1, n_2, \ldots, n_j \}$. There is an $s' \in S$ so that $s' > \max M_1$. Since $k_1 \geq h$, $k_1 \not\in A$ so there is an $s \in S$ with $s > s'$ so $f_s(k_1) > q$. Let $1 \leq d \leq j$. Since $M \subset R$, $f_\beta(k_d) < n_d \leq q < f_s(k_1) \leq f_s(k_d)$. Thus $M_2 \subset \{ \langle k, n \rangle: k \geq m, f_\beta(k) < n \leq f_s(k) \} \subset U(s, \beta, m)$. It follows that $M \subset U(s, \beta, m)$.

X is not almost \aleph_0-fully normal. Set $\mathcal{B}' = \{ U(x, 0, 0): x \in \mu \}$ and set $\mathcal{B} = \mathcal{B}' \cup \{ \{ x \}: x \in \omega \times \omega \}$. Suppose \mathcal{L} is an open locally finite cover of X with the property that every countable refiner of \mathcal{L} is a refiner of \mathcal{B}. Since $\mathcal{L} \setminus \mu$ is locally finite, and hence finite, only finitely many members of \mathcal{L} meet μ; list these members as L_1, L_2, \ldots, L_r. For each $x \in \mu$, there are k_x, β_x and n_x so that $x \in U(x, \beta_x, n_x) \subset L_{k_x}$.
where \(U(x, \beta_x, n_x) \) is a basic open set about \(x \). By the Pressing-Down Lemma, there is a cofinal subset \(S \) of \(\mu \), \(m \in \omega \), \(\tilde{k} \) with \(1 \leq \tilde{k} \leq z \), and \(\tilde{\beta} \in \mu \) so that for each \(x \in S \), \(k_x = \tilde{k} \), \(\beta_x = \tilde{\beta} \) and \(n_x = m \). Set \(\tilde{A} = \{ k \in \omega : \langle f(k) \rangle_{x \in S} \text{ is eventually bounded} \} \). Then \(\tilde{A} \) is finite and there is a natural number \(\tilde{h} \) exceeding \(\max(\tilde{A}) \). Set
\[
\tilde{R} = (\tilde{\beta}, \mu) \cup \{ \langle k, n \rangle : k \geq \tilde{h}, m \text{ and } f_{\tilde{\beta}}(k) < n \}.
\]
Then \(\tilde{R} \subset L_z^\omega \) so each countable subset of \(\tilde{R} \) is a refiner of \(\tilde{R} \). Let \(D = \tilde{R} \setminus \mu \). Then \(D \)
is a refiner of \(\tilde{R} \)—a contradiction. ■

In his thesis [5, Theorem 2.2.10], H. J. K. Junnila proves that a space \(X \) is 2-fully normal if and only if it is almost 2-fully normal and for each open cover \(C \) of \(X \) there is a reflexive relation \(V \) on \(X \) such that, for each \(x \in X \), \(V(x) \) is open and such that, for each \(x \in X \) and \(y \in V(x) \), \(V(x) \cup V(y) \) is a refiner of \(C \). In particular, every orthocompact almost 2-fully normal space is 2-fully normal. It is unknown whether the converse holds; the referee suggests that the space we have considered above could possibly be used in the construction of a counterexample.

Since the space \(X \) was constructed as an example of a space that does not have a countably-compactification, it is interesting to note that nearly the same method of proof establishes that the following countably compact normal space \(Y \) is not \(q \)-complete.

Let \(\langle A_\alpha \rangle_{\alpha \in \mu} \) be an increasing maximal tower on \(\omega \), where \(\mu \) is a regular cardinal. Let \(Y = \mu \cup \omega \) and, as usual, define a topology on \(Y \) by specifying the following neighborhoods: Points of \(\omega \) are isolated. If \(0 \leq \beta < \alpha < \mu \) and \(F \) is a finite subset of \(\omega \), set
\[
U(\alpha, \beta, F) = (\beta, \alpha] \cup [A_\alpha \setminus A_\beta] \setminus F,
\]
and if \(\alpha = 0 \) and \(F \) is a finite subset of \(\omega \), set
\[
U(0, \beta, F) = \{0\} \cup (A_0 \setminus F).
\]
Then \(\mathcal{G} = \text{fil}\{ (\omega \setminus A_\alpha) \setminus F : \alpha \in \mu \text{ and } F \text{ is a finite subset of } \omega \} \) is a filter without a cluster point that is a Cauchy filter with respect to each quasi-uniformity that \(Y \) admits.

The similarity of the methods of proof that \(X \) and \(Y \) are not \(q \)-complete is not just a coincidence. The basic neighborhoods of points of \(\mu \) in \(X \) can be defined in terms of the following tower on \(\omega \times \omega : \langle \{ (k, n) : k \in \omega, n = f_{\alpha}(k) \} \rangle_{\alpha \in \mu} \).

REFERENCES

Department of Mathematics, Universität Bern, CH-3012 Bern, Switzerland

Department of Mathematics, Virginia Polytech Institute & State University, Blacksburg, Virginia 24061 (Current address of both authors)