ABELIAN p-GROUPS A AND B SUCH THAT
$\text{Tor}(A, G) \cong \text{Tor}(B, G)$, G REDUCED

DOYLE CUTLER¹

Abstract. Let A be an abelian p-group having all of its finite Ulm invariants nonzero. Let C be a countable direct sum of cyclic p-groups such that for each nonnegative integer n, the nth Ulm invariant of C is zero if the nth Ulm invariant of A is finite. Then for all reduced abelian groups G, $\text{Tor}(G, A) \cong \text{Tor}(G, A \oplus C)$.

In [2], we gave an example of two nonisomorphic $p^{\omega+1}$-projective abelian p-groups A and A' with the property that for all reduced abelian groups G, $\text{Tor}(G, A) \cong \text{Tor}(G, A')$. In the example, $A' = A \oplus C$ where C was a countable unbounded direct sum of cyclic p-groups. In this note we will show that the same techniques provide a much more general result leading to many examples of nonisomorphic abelian p-groups A and A' such that $\text{Tor}(G, A) \cong \text{Tor}(G, A')$ for all reduced abelian groups G. For example, if $B = \bigoplus_{\omega} \mathbb{Z}(p^{n_\omega})$ then the torsion completion, \overline{B}, of B has no unbounded summand which is a direct sum of cyclic groups. Thus, if C is a countable unbounded direct sum of cyclic groups, then $\overline{B} \not\cong C \oplus \overline{B}$. We will show that $\text{Tor}(G, \overline{B}) \cong \text{Tor}(G, \overline{B} \oplus C)$ for all reduced abelian groups G.

In the following, all groups will be abelian groups, p is a fixed but arbitrary prime, $\mathbb{Z}(p^\omega)$ is a cyclic group of order p^ω, ω is the first infinite ordinal and κ is an infinite cardinal. If A is a p-group then by $r(A)$ we shall mean the rank of A. The final rank of A, denoted $\text{fin} \ r(A)$, is the inf $n \in \omega \ r(p^n A)$. The notation and terminology will be the same as that in [3].

We will need the following technical lemma in the proof of our Theorem. Recall that for a p-group A and $i \in \omega$, the ith Ulm invariant of A not zero means that A has a cyclic summand of order p^{i+1}.

Lemma. Let $0 \to B \to G \to \bigoplus_\kappa \mathbb{Z}(p^\omega) \to 0$ be a pure exact sequence where κ is an infinite cardinal. Let A be a p-group and $(n_i)_{i \in \omega}$ be a subsequence of ω such that the n_ith Ulm invariant of A is not zero. Then $\text{Tor}(G, A)$ has a summand S such that $S = \bigoplus_{i \in \omega} \bigoplus_\kappa \mathbb{Z}(p^{n_i+1})$.

Proof. By Theorem 63.2 in [3], if $0 \to B \to G \to \bigoplus_\kappa \mathbb{Z}(p^\omega) \to 0$ is pure exact then the induced sequence $0 \to \text{Tor}(B, A) \to \text{Tor}(G, A) \to \bigoplus_\kappa A \to 0$ is pure exact for all p-groups A. Let A be the induced homomorphism from $\text{Tor}(G, A)$ to $\bigoplus_\kappa A$. For each $i \in \omega$, since the n_ith Ulm invariant of A is not zero, we have a decomposition $A = \mathbb{Z}(p^{n_i+1}) \oplus A_i$. By partitioning κ into N_0 sets of cardinality κ,

Received by the editors June 23, 1983.

1980 Mathematics Subject Classification. Primary 20K10, 20K40.

Key words and phrases. Abelian p-group, torsion product.

¹This work was completed while the author was on sabbatical, visiting Tulane University.
we have $\bigoplus_{\kappa} A = S' \oplus A'$ where

$$S' = \bigoplus_{i \in \omega} \left(\bigoplus_{\kappa} Z(p^{n_i+1}) \right) \quad \text{and} \quad A' = \bigoplus_{i \in \omega} \left(\bigoplus_{\kappa} A_i \right).$$

Since $\text{Tor}(B,A)$ is pure in $\text{Tor}(G,A)$, we also have $\text{Tor}(B,A)$ pure in $\lambda^{-1}(S')$. By this purity and the fact that S' is a direct sum of cyclic groups, it follows from Theorem 28.2 of [3] that $\lambda^{-1}(S') = \text{Tor}(B,A) \oplus S$ with $S \cong S'$. Since $S \cap \lambda^{-1}(A') = 0$ and $S + \lambda^{-1}(A') = \text{Tor}(G,A)$, we have $\text{Tor}(G,A) \cong S \oplus \lambda^{-1}(A')$.

Theorem. Let A be an abelian p-group such that, for all $i \in \omega$, the ith Ulm invariant of A is not zero. Let C be a countable direct sum of cyclic p-groups such that for all $i \in \omega$, the ith Ulm invariant of C is zero if the ith Ulm invariant of A is finite. Then for all reduced abelian groups G, $\text{Tor}(G,A) \cong \text{Tor}(G,A \oplus C)$.

Proof. Since A and K are p-groups, we need only consider the case in which G is a p-group. Note that if B is a basic subgroup of A, the condition on the Ulm invariants of C and the fact that C is countable implies that $B \cong B \oplus C$. It follows easily that, for all positive integers n, $A[p^n] \cong (A \oplus C)[p^n]$. Since $\text{Tor}(Z(p^n), A) \cong A[p^n]$ for all groups A, we have $\text{Tor}(Z(p^n), A) \cong \text{Tor}(Z(p^n), A \oplus C)$. Since Tor commutes with direct sums, $\text{Tor}(K,A) \cong \text{Tor}(K,A \oplus C)$ for all K which are direct sums of cyclic groups.

Let G be an unbounded reduced p-group and let B be a basic subgroup of G such that $r(G/B) = \text{fin } r(G)$. If $r(G/B) < r(B)$, then, by Lemma 1 of [1], there is a decomposition of G, say $G = H \oplus L$, such that L is a subgroup of B, $H \cap B$ is a basic subgroup of H, and $r(H/(H \cap B)) \geq r(H \cap B)$. Since Tor commutes with direct sums and $\text{Tor}(L,A) \cong \text{Tor}(L',A')$, we need only consider unbounded reduced p-groups G which have a basic subgroup B with $r(B) \leq r(G/B)$. With this assumption, we have the pure exact sequence $0 \to B \to G \to \bigoplus_{\kappa} Z(p^\kappa) \to 0$ where $|G| = \kappa \geq |B|$. By the above Lemma, $\text{Tor}(G,A)$ has a summand $S = \bigoplus_{\kappa \in \omega} \left(\bigoplus_{\kappa} Z(p^{\kappa+1}) \right)$. Note that since C is a countable direct sum of cyclic p-groups, $\text{Tor}(G,Z(p^n)) \cong G[p^n]$, and Tor commutes with direct sums,

$$\text{Tor}(G,C) = \bigoplus_{\kappa} \left(\bigoplus_{\kappa} Z(p^{\kappa+1}) \right) \quad \text{where } \kappa_i \leq \kappa.$$

Thus $\text{Tor}(G,C) \oplus S \cong S$. Hence $\text{Tor}(G,A \oplus C) \cong \text{Tor}(G,A)$.

Corollary. Let A be an abelian p-group with the following properties:

1. For $i \in \omega$, the ith Ulm invariant of A is infinite;
2. A has no unbounded summand which is a direct sum of cyclic groups.

Then for all countable unbounded direct sums of cyclic groups C, $A \neq A \oplus C$, but $\text{Tor}(G,A) \cong \text{Tor}(G,A \oplus C)$ for all reduced abelian groups G.

This leads one naturally to pose the following open problem.

Problem. Find an example of two abelian p-groups A and A' such that for all direct sums of cyclic groups K and K', $A \oplus K \neq A' \oplus K'$ but $\text{Tor}(G,A) \cong \text{Tor}(G,A')$ for all reduced abelian groups G.

One might note that no such example exists for the class of $p^{\omega+n}$-projective p-groups. To see this, suppose that A and A' are $p^{\omega+n}$-projective p-groups such that $\text{Tor}(G,A) \cong \text{Tor}(G,A')$ for all reduced abelian groups G. Let $C = \bigoplus_{\kappa} Z(p^{\kappa+1})$.
and let H_n be a p-group such that $H_n/p\omega H_n \cong C$ and $p\omega H_n \cong Z(p^n)$. Let $B (\cong C)$ be a $p^{\omega+n-1}$-high subgroup of H_n. By Proposition 1 in [4], B is $p^{\omega+n}$-pure in H_n. Thus the exact sequence $0 \to B \to H_n \to Z(p^{\infty}) \to 0$ is $p^{\omega+n}$-pure exact. Thus by Proposition 2 in [4], the induced sequence $0 \to \text{Tor}(A, B) \to \text{Tor}(A, H_n) \to A \to 0$ is $p^{\omega+n}$-pure exact. Thus, since A is $p^{\omega+n}$-projective, $\text{Tor}(A, H_n) \cong A \oplus \text{Tor}(A, B)$. Since $\text{Tor}(A, B)$ is a direct sum of cyclic groups and $\text{Tor}(A, H_n) \cong \text{Tor}(A', H_n)$, there exist direct sums of cyclic p-groups K and K' such that $A \oplus K \cong A' \oplus K'$.

References

Department of Mathematics, University of California, Davis, California 95616