Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bloch constants for meromorphic functions near an isolated singularity


Author: David Minda
Journal: Proc. Amer. Math. Soc. 91 (1984), 69-72
MSC: Primary 30C25; Secondary 30D99
DOI: https://doi.org/10.1090/S0002-9939-1984-0735566-6
MathSciNet review: 735566
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ f$ is meromorphic in a punctured neighborhood of the origin and has an essential singularity at the origin. Given any $ \varepsilon > 0$ we show that the Riemann surface of $ f$ contains an unramified disk of spherical radius $ \pi /3 - \varepsilon $. The number $ \pi /3$ can be replaced by $ \pi /2$ if $ f$ is locally schlicht and this value is best possible. If $ f$ is actually holomorphic, then the Riemann surface of $ f$ contains arbitrarily large unramified euclidean disks. These results generalize theorems of Valiron and Ahlfors dealing with holomorphic and meromorphic functions, respectively, on the complex plane which have an essential singularity at infinity.


References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors, Sur les fonctions inverses des fonctions méromorphes, C. R. Acad. Sci. Paris 194 (1932), 1145-1147.
  • [2] -, Conformal invariants, topics in geometric function theory, McGraw-Hill, New York, 1973. MR 0357743 (50:10211)
  • [3] A. Bloch, Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation, Ann. Fac. Sci. Toulouse Math. (3) 17 (1926), 1-22.
  • [4] O. Lehto, Distribution of values and singularities of analytic functions, Ann. Acad. Sci. Fenn. Ser. A I 249 (1957), 16 pp. MR 0096800 (20:3282)
  • [5] -, The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity, Comment. Math. Helv. 33 (1959), 196-205. MR 0107003 (21:5732)
  • [6] O. Lehto and K. I. Virtanen, On the behavior of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn. Ser. A I 240 (1957), 9 pp. MR 0087747 (19:404a)
  • [7] C. D. Minda, Bloch constants, J. Analyse Math. 41 (1982), 54-84. MR 687945 (85e:30013)
  • [8] -, Bloch constants for meromorphic functions, Math. Z. 181 (1982), 83-92. MR 671716 (84b:30033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C25, 30D99

Retrieve articles in all journals with MSC: 30C25, 30D99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0735566-6
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society