Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oscillation of linear second-order differential systems


Authors: Man Kam Kwong, Hans G. Kaper, Kazuo Akiyama and Angelo B. Mingarelli
Journal: Proc. Amer. Math. Soc. 91 (1984), 85-91
MSC: Primary 34C10
DOI: https://doi.org/10.1090/S0002-9939-1984-0735570-8
MathSciNet review: 735570
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This article is concerned with the oscillatory behavior at infinity of the solution $ y:[a,\infty ) \to {{\mathbf{R}}^n}$ of a system of second-order differential equations, $ y''\left( t \right) + Q\left( t \right)y\left( t \right) = 0$, $ t \in [a,\infty )$; $ Q$ is a continuous matrix-valued function on $ [a,\infty )$ whose values are real symmetric matrices of order $ n$; it is assumed that the largest eigenvalue of the matrix $ \int_a^t {Q\left( s \right)ds} $ tends to infinity as $ t \to \infty $. Various sufficient conditions are given which guarantee oscillatory behavior at infinity; these conditions generalize those of Mingarelli [C.R. Math. Rep. Acad. Sci. Canada 2 (1980), 287-290, and Proc. Amer. Math. Soc. 82 (1981), 593-598].


References [Enhancements On Off] (What's this?)

  • [1] K. Akiyama, On the maximum eigenvalue conjecture for the oscillation of second order differential systems, M.S. Thesis, University of Ottawa, 1983.
  • [2] W. J. Coles and D. Willett, Summability criteria for oscillation of second order linear differential equations, Ann. Mat. Pura Appl. (4) 79 (1968), 391-398. MR 0236462 (38:4757)
  • [3] W. A. Coppel, Disconjugacy, Lecture Notes in Math., Vol. 220, Springer-Verlag, Berlin and New York, 1971. MR 0460785 (57:778)
  • [4] G. J. Etgen and J. F. Pawlowski, Oscillation criteria for second order self-adjoint differential systems Pacific J. Math. 66 (1976), 99-110. MR 0440147 (55:13027)
  • [5] D. Hinton and R. T. Lewis, Oscillation theory for generalized second order differential equations, Rocky Mountain J. Math. 10 (1980), 751-766. MR 595103 (82c:34039)
  • [6] Man Kam Kwong and A. Zettl, Integral inequalities and second order linear oscillation, J. Differential Equations 45 (1982), 16-33. MR 662484 (83i:34034)
  • [7] -, Asymptotically constant functions and second order linear oscillation, J. Math. Anal. Appl. (to appear). MR 700159 (84k:34044)
  • [8] A. Mingarelli, An oscillation criterion for second order self-adjoint differential systems, C.R. Math. Rep. Acad. Sci. Canada 2 (1980), 287-290. MR 600563 (82b:34042)
  • [9] -, On a conjecture for oscillation of second order ordinary differential sytems, Proc. Amer. Math. Soc. 82 (1981), 593-598. MR 614884 (82j:34028)
  • [10] W. T. Reid, Ordinary differential equations, Wiley, New York, 1971. MR 0273082 (42:7963)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0735570-8
Keywords: Matrix differential equation, oscillation theory, matrix Riccati equation, Riccati inequality
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society