Oscillation of linear second-order differential systems

Authors:
Man Kam Kwong, Hans G. Kaper, Kazuo Akiyama and Angelo B. Mingarelli

Journal:
Proc. Amer. Math. Soc. **91** (1984), 85-91

MSC:
Primary 34C10

DOI:
https://doi.org/10.1090/S0002-9939-1984-0735570-8

MathSciNet review:
735570

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This article is concerned with the oscillatory behavior at infinity of the solution of a system of second-order differential equations, , ; is a continuous matrix-valued function on whose values are real symmetric matrices of order ; it is assumed that the largest eigenvalue of the matrix tends to infinity as . Various sufficient conditions are given which guarantee oscillatory behavior at infinity; these conditions generalize those of Mingarelli [C.R. Math. Rep. Acad. Sci. Canada **2** (1980), 287-290, and Proc. Amer. Math. Soc. **82** (1981), 593-598].

**[1]**K. Akiyama,*On the maximum eigenvalue conjecture for the oscillation of second order differential systems*, M.S. Thesis, University of Ottawa, 1983.**[2]**W. J. Coles and D. Willett,*Summability criteria for oscillation of second order linear differential equations*, Ann. Mat. Pura Appl. (4)**79**(1968), 391-398. MR**0236462 (38:4757)****[3]**W. A. Coppel,*Disconjugacy*, Lecture Notes in Math., Vol. 220, Springer-Verlag, Berlin and New York, 1971. MR**0460785 (57:778)****[4]**G. J. Etgen and J. F. Pawlowski,*Oscillation criteria for second order self-adjoint differential systems*Pacific J. Math.**66**(1976), 99-110. MR**0440147 (55:13027)****[5]**D. Hinton and R. T. Lewis,*Oscillation theory for generalized second order differential equations*, Rocky Mountain J. Math.**10**(1980), 751-766. MR**595103 (82c:34039)****[6]**Man Kam Kwong and A. Zettl,*Integral inequalities and second order linear oscillation*, J. Differential Equations**45**(1982), 16-33. MR**662484 (83i:34034)****[7]**-,*Asymptotically constant functions and second order linear oscillation*, J. Math. Anal. Appl. (to appear). MR**700159 (84k:34044)****[8]**A. Mingarelli,*An oscillation criterion for second order self-adjoint differential systems*, C.R. Math. Rep. Acad. Sci. Canada**2**(1980), 287-290. MR**600563 (82b:34042)****[9]**-,*On a conjecture for oscillation of second order ordinary differential sytems*, Proc. Amer. Math. Soc.**82**(1981), 593-598. MR**614884 (82j:34028)****[10]**W. T. Reid,*Ordinary differential equations*, Wiley, New York, 1971. MR**0273082 (42:7963)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0735570-8

Keywords:
Matrix differential equation,
oscillation theory,
matrix Riccati equation,
Riccati inequality

Article copyright:
© Copyright 1984
American Mathematical Society