Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Lorentz space as a dual space


Author: Pratibha G. Ghatage
Journal: Proc. Amer. Math. Soc. 91 (1984), 92-94
MSC: Primary 46E30
DOI: https://doi.org/10.1090/S0002-9939-1984-0735571-X
MathSciNet review: 735571
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ (X,S,\mu )$ is a finite, completely nonatomic measure space and $ \phi (t) = {t^{1/p}}(p > 1)$ then the Lorentz space $ {N_\phi }$ is the dual space of the closed span of simple functions in $ {M_\phi }( = N_\phi ^ * )$.


References [Enhancements On Off] (What's this?)

  • [1] N. Dunford and J. T. Schwartz, Linear operators. I, General Theory, Pure and Appl. Math., Vol. 7, Interscience, New York, 1958. MR 0117523 (22:8302)
  • [2] M. S. Steigerwalt and A. J. White, Some function spaces related to $ {L_p}$ spaces, Proc. London Math. Soc. 22 (1971), 137-163. MR 0279582 (43:5304)
  • [3] W. Rudin, Real and complex analysis, 2nd ed., McGraw-Hill, New York, 1974. MR 0344043 (49:8783)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E30

Retrieve articles in all journals with MSC: 46E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0735571-X
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society