A complement theorem for shape concordant compacta

Author:
R. B. Sher

Journal:
Proc. Amer. Math. Soc. **91** (1984), 123-132

MSC:
Primary 57N25; Secondary 54C56

DOI:
https://doi.org/10.1090/S0002-9939-1984-0735578-2

MathSciNet review:
735578

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be compacta of polyhedral shape lying in the manifold . Under suitable conditions, it is shown that if and are shape concordant, then is homeomorphic to .

**[1]**Karol Borsuk,*Theory of shape*, PWN—Polish Scientific Publishers, Warsaw, 1975. Monografie Matematyczne, Tom 59. MR**0418088****[2]**J. F. P. Hudson,*Piecewise linear topology*, University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR**0248844****[3]**J. F. P. Hudson,*Concordance, isotopy, and diffeotopy*, Ann. of Math. (2)**91**(1970), 425–448. MR**0259920**, https://doi.org/10.2307/1970632**[4]**L. S. Husch and I. Ivanšić,*On shape concordance*, Shape Theory and Geometric Topology (S. Mardešić and J. Segal, Eds.), Lecture Notes in Math., vol. 870, Springer-Verlag, New York, 1981, pp. 135-149.**[5]**I. Ivanšić and R. B. Sher,*A complement theorem for continua in a manifold*, The Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio, 1979), 1979, pp. 437–452 (1980). MR**598285****[6]**R. B. Sher,*Complement theorems in shape theory*, Shape theory and geometric topology (Dubrovnik, 1981) Lecture Notes in Math., vol. 870, Springer, Berlin-New York, 1981, pp. 150–168. MR**643529****[7]**John Stallings,*The embedding of homotopy types into manifolds*, mimeographed notes.**[8]**Gerard A. Venema,*Embeddings in shape theory*, Shape theory and geometric topology (Dubrovnik, 1981) Lecture Notes in Math., vol. 870, Springer, Berlin-New York, 1981, pp. 169–185. MR**643530**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57N25,
54C56

Retrieve articles in all journals with MSC: 57N25, 54C56

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0735578-2

Keywords:
Complement theorem,
shape concordance,
inessential loops condition,
polyhedral shape

Article copyright:
© Copyright 1984
American Mathematical Society