A tower of spectra that realizes a chain complex

Author:
Pedro A. Suárez

Journal:
Proc. Amer. Math. Soc. **91** (1984), 133-138

MSC:
Primary 55S10; Secondary 55S45

DOI:
https://doi.org/10.1090/S0002-9939-1984-0735579-4

MathSciNet review:
735579

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents the construction of a tower of spectra with -invariants coming from the relations in , for and = Steenrod algebra , such that has prescribed homotopy groups: (integers) if , and zero otherwise.

**[1]**Donald M. Davis,*The antiautomorphism of the Steenrod algebra*, Proc. Amer. Math. Soc.**44**(1974), 235–236. MR**0328934**, https://doi.org/10.1090/S0002-9939-1974-0328934-1**[2]**R. James Milgram (ed.),*Problems presented to the 1970 AMS Summer Colloquium in Algebraic Topology*, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 187–201. MR**0315691****[3]**Graeme Segal,*The multiplicative group of classical cohomology*, Quart. J. Math. Oxford Ser. (2)**26**(1975), no. 103, 289–293. MR**0380770**, https://doi.org/10.1093/qmath/26.1.289**[4]**Richard Steiner,*Decompositions of groups of units in ordinary cohomology*, Quart. J. Math. Oxford Ser. (2)**30**(1979), no. 120, 483–494. MR**559052**, https://doi.org/10.1093/qmath/30.4.483**[5]**R. E. Stong,*Determination of**and*, Trans. Amer. Math. Soc.**107**(1963), 526-544.**[6]**P. A. Suarez,*A spectrum realization of a finite chain complex over the cohomology ring of the stable integral Eilenberg-Mac Lane space at the prime two*, Thesis, Northwestern Univ., Evanston, Ill., 1977.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55S10,
55S45

Retrieve articles in all journals with MSC: 55S10, 55S45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0735579-4

Keywords:
Tower of spectra,
chain complex,
Steenrod algebra,
fibrations of spectra,
cohomology exact sequences

Article copyright:
© Copyright 1984
American Mathematical Society