A FUNDAMENTAL INEQUALITY IN THE CONVOLUTION
OF L_2 FUNCTIONS ON THE HALF LINE

SABUROU SAITO

ABSTRACT. For any positive integer q and $F_j \in L_2(0, \infty)$, we note the inequality for the iterated convolution $\prod_{j=1}^{2q} F_j$ of F_j:

$$\int_0^{\infty} \left| \prod_{j=1}^{2q} F_j(t) \right|^2 t^{1-2q} dt \leq \frac{1}{(2q-1)!} \prod_{j=1}^{2q} \int_0^{\infty} |F_j(t)|^2 dt.$$

1. Result. For the convolution $F * G$ of $F \in L_p(-\infty, \infty)$ and $G \in L_1(-\infty, \infty)$ ($p \geq 1$), we know the fundamental inequality

$$(1.1) \quad \|F * G\|_p \leq \|F\|_p \|G\|_1.$$

See, for example, [4, p. 3]. Note that for $F, G \in L_2(-\infty, \infty)$, in general, $F * G \notin L_2(-\infty, \infty)$. In this note, we give

THEOREM 1.1. We take a positive integer q and $F_j \in L_2(0, \infty)$. Then, for the iterated convolution $\prod_{j=1}^{2q} F_j$ of F_j, we obtain the inequality

$$(1.2) \quad \int_0^{\infty} \left| \prod_{j=1}^{2q} F_j(t) \right|^2 t^{1-2q} dt \leq \frac{1}{(2q-1)!} \prod_{j=1}^{2q} \int_0^{\infty} |F_j(t)|^2 dt.$$

Equality holds here if and only if each F_j is expressible in the form c_je^{-tu} for some constant c_j and for some point u such that $Re u > 0$ and u is independent of j.

2. Proof of theorem. For $F \in L_2(0, \infty)$ and, in general, $q \geq 2$, we consider the integral transform

$$(2.1) \quad f(z) = \int_0^{\infty} e^{-zt} F(t)t^{q-(1/2)} dt.$$

Then it is known that $f(z)$ are analytic on Re $z > 0$, the images $f(z)$ form a Hilbert space H_ν admitting the reproducing kernel

$$(2.2) \quad K_\nu(z, \bar{u}) = \Gamma(2q)/(z + \bar{u})^{2q}$$

and

$$(2.3) \quad \|f\|^2_{H_\nu} = \int_0^{\infty} |F(t)|^2 dt.$$

Received by the editors June 15, 1982.

1980 Mathematics Subject Classification. Primary 26D90; Secondary 30C40.

Key words and phrases. Convolution, Paley-Wiener theorem, Laplace transform.

©1984 American Mathematical Society
0002-9939/84 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
See, for example, [2, pp. 113–114]. In particular, when \(q = \frac{1}{2} \), we set

\[
(2.4) \quad f_j(z) = \int_0^\infty e^{-zt} F_j(t) \, dt,
\]

and, therefore

\[
(2.5) \quad \|f_j\|^2_{H_{1/2}} = \int_0^\infty |F_j(t)|^2 \, dt.
\]

Note that for an integer \(q \),

\[
(2.6) \quad K_q(z, \bar{u}) = (2q - 1)! K_{1/2}(z, \bar{u})^{2q}.
\]

Hence, from the general theory of Aronszajn [1, pp. 357–362, 350–352], we obtain the inequality

\[
(2.7) \quad \left\| \prod_{j=1}^{2q} f_j \right\|^2_{H_q} \leq \frac{1}{(2q - 1)!} \prod_{j=1}^{2q} (\|f_j\|^2_{H_{1/2}})
\]

as in [3].

On the other hand, we have

\[
(2.8) \quad \prod_{j=1}^{2q} f_j(z) = \int_0^\infty e^{-zt} \left(\prod_{j=1}^{2q} F_j(t) \right) \, dt,
\]

and since \(\prod_{j=1}^{2q} f_j(z) \in H_q \),

\[
(2.9) \quad \prod_{j=1}^{2q} f_j(z) = \int_0^\infty e^{-zt} F^*(t)t^{q-(1/2)} \, dt
\]

for some uniquely determined \(F^* \in L_2(0, \infty) \). From the isometry (2.3) and (2.7), we thus obtain the desired inequality (1.2).

Next, in order to prove the equality statement, we recall that equality holds in (2.7) if and only if each \(f_j \) is expressible in the form \(c_j K_{1/2}(z, \bar{u}) \) for some constant \(c_j \) and for some point \(u \) such that \(\text{Re}\, u > 0 \) and \(u \) is independent of \(j \). See [3] for the case of the unit disc and \(q = 1 \). Note that the result [3] also implies the desired result for, in general, \(q \) for the present situation. See again [1, p. 361, Theorem II].

Hence,

\[
(2.10) \quad f_j(z) = c_j K_{1/2}(z, \bar{u}) = c_j \int_0^\infty e^{-zt} e^{-\bar{u}t} \, dt,
\]

and we thus see that each \(F_j \) is expressible in the desired form \(c_j e^{-t\bar{u}} \).

References

Department of Mathematics, Faculty of Engineering, Gunma University, 1-5-1, Tenjin-Cho, Kiryu 376, Japan

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use