Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Helson-Sarason-Szegő theorem and the Abel summability of the series for the predictor


Author: Mohsen Pourahmadi
Journal: Proc. Amer. Math. Soc. 91 (1984), 306-308
MSC: Primary 60G25; Secondary 42A99
DOI: https://doi.org/10.1090/S0002-9939-1984-0740191-7
MathSciNet review: 740191
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the best linear least squares predictor of a stationary stochastic process has a mean Abel summable series representation in the time domain if its density satisfies the condition of the Helson-Sarason-Szego theorem. This provides an answer to an open question of Wiener and Masani (1958) in prediction theory.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Doob, Stochastic processes, Wiley, New York, 1953. MR 0058896 (15:445b)
  • [2] H. Helson and G. Szego, A problem in prediction theory, Ann. Mat. Pura Appl. (4) 51 (1960), 107-138. MR 0121608 (22:12343)
  • [3] H. Helson and D. Sarason, Past and future, Math. Scand. 21 (1967), 5-16. MR 0236989 (38:5282)
  • [4] A. N. Kolmogorov, Stationary sequences in a Hilbert space, Bull. Math. Univ. Moscow 2 (1941), 1-40.
  • [5] P. R. Masani, The prediction theory of multivariate stochastic processes. III, Acta Math. 104 (1960), 141-162. MR 0121952 (22:12679)
  • [6] M. Pourahmadi, A matricial extension of the Helson-Szego Theorem and its application in multivariate prediction, J. Multivariate Anal. (to appear). MR 790606 (87h:60091)
  • [7] M. Rosenblum, Summability of Fourier Series in $ {L^p}(d\mu )$, Trans. Amer. Math. Soc. 105 (1962), 32-42. MR 0160073 (28:3287)
  • [8] N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes, Acta Math. 99 (1958), 93-137. MR 0097859 (20:4325)
  • [9] A. Zygmund, Trigonometric series. I, Cambridge Univ. Press, London and New York, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G25, 42A99

Retrieve articles in all journals with MSC: 60G25, 42A99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0740191-7
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society