Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Surgery up to homotopy equivalence for nonpositively curved manifolds

Authors: A. Nicas and C. Stark
Journal: Proc. Amer. Math. Soc. 91 (1984), 323-325
MSC: Primary 57R67; Secondary 57R65
MathSciNet review: 740195
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {M^n}$ be a smooth closed manifold which admits a metric of nonpositive curvature. We show, using a theorem of Farrell and Hsiang, that if $ n + k \geqslant 6$, then the surgery obstruction map $ \left[ {M \times {D^k},\partial ;G / {\text{TOP}}} \right] \to L_{n + k}^h\left( {{\pi _1}M,{w_1}\left( M \right)} \right)$ is injective, where $ L_ * ^h$ are the obstruction groups for surgery up to homotopy equivalence.

References [Enhancements On Off] (What's this?)

  • [1] F. T. Farrell and W. C. Hsiang, On Novikov's conjecture for non-positively curved manifolds. I, Ann. of Math. (2) 113 (1981), 199-209. MR 604047 (83j:57018)
  • [2] R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton Univ. Press, Princeton, N. J., 1977. MR 0645390 (58:31082)
  • [3] K. W. Kwun and R. H. Sczarba, Product and sum theorems for Whitehead torsion, Ann. of Math. (2) 82 (1965), 183-190. MR 0182972 (32:454)
  • [4] A. J. Nicas, Induction theorems for groups of homotopy manifold structures, Mem. Amer. Math. Soc. No. 267 (1982). MR 668807 (83i:57026)
  • [5] C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970. MR 0431216 (55:4217)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R67, 57R65

Retrieve articles in all journals with MSC: 57R67, 57R65

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society