Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Applications of the joint angular field of values


Author: George Phillip Barker
Journal: Proc. Amer. Math. Soc. 91 (1984), 331-335
MSC: Primary 15A60
MathSciNet review: 744623
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {A_1}, \ldots ,{A_m}$ be $ n \times n$ hermitian matrices and let $ {\mathcal{H}_n}$ be the real space of $ n \times n$ hermitian matrices. If $ {\operatorname{span}}\left\{ {{A_1}, \ldots ,{A_m}} \right\} = {\mathcal{H}_n}$, then the extreme rays of the joint angular field of values of $ \left\{ {{A_1}, \ldots ,{A_m}} \right\}$ are determined. Then this cone is used to give necessary and sufficient conditions for the existence of hermitian matrices $ {B_1}, \ldots ,{B_m}$ such that $ {A_1} \otimes {B_1} + \cdots + {A_m} \otimes {B_m}$ preserves the cone of the positive semidefinite matrices where $ A \otimes B$ is the dyad product $ A \otimes B\left( H \right) = \left( {{\text{tr}}BH} \right)A$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A60

Retrieve articles in all journals with MSC: 15A60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1984-0744623-X
PII: S 0002-9939(1984)0744623-X
Keywords: Numerical range, positive semidefinite matrices, linear transformations of hermitian matrices
Article copyright: © Copyright 1984 American Mathematical Society