Applications of the joint angular field of values

Author:
George Phillip Barker

Journal:
Proc. Amer. Math. Soc. **91** (1984), 331-335

MSC:
Primary 15A60

MathSciNet review:
744623

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be hermitian matrices and let be the real space of hermitian matrices. If , then the extreme rays of the joint angular field of values of are determined. Then this cone is used to give necessary and sufficient conditions for the existence of hermitian matrices such that preserves the cone of the positive semidefinite matrices where is the dyad product .

**[1]**George Phillip Barker and David Carlson,*Cones of diagonally dominant matrices*, Pacific J. Math.**57**(1975), no. 1, 15–32. MR**0404302****[2]**George Phillip Barker, Richard D. Hill, and Raymond D. Haertel,*On the completely positive and positive-semidefinite-preserving cones*, Linear Algebra Appl.**56**(1984), 221–229. MR**724562**, 10.1016/0024-3795(84)90127-7**[3]**Abraham Berman and Adi Ben-Israel,*More on linear inequalities with applications to matrix theory*, J. Math. Anal. Appl.**33**(1971), 482–496. MR**0279117****[4]**F. F. Bonsall and J. Duncan,*Numerical ranges. II*, Cambridge University Press, New York-London, 1973. London Mathematical Society Lecture Notes Series, No. 10. MR**0442682****[5]**Man Duen Choi,*Completely positive linear maps on complex matrices*, Linear Algebra and Appl.**10**(1975), 285–290. MR**0376726****[6]**John de Pillis,*Linear transformations which preserve hermitian and positive semidefinite operators*, Pacific J. Math.**23**(1967), 129–137. MR**0222101****[7]**P. A. Fillmore and J. P. Williams,*Some convexity theorems for matrices*, Glasgow Math. J.**12**(1971), 110–117. MR**0308159****[8]**Ju. M. Glazman and Ju. I. Ljubic,*Finite dimensional linear analysis*, M.I.T. Press, Cambridge, Mass., 1974.**[9]**Bit Shun Tam,*Some results of polyhedral cones and simplicial cones*, Linear and Multilinear Algebra**4**(1976/77), no. 4, 281–284. MR**0429953**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
15A60

Retrieve articles in all journals with MSC: 15A60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0744623-X

Keywords:
Numerical range,
positive semidefinite matrices,
linear transformations of hermitian matrices

Article copyright:
© Copyright 1984
American Mathematical Society