Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On units of certain cubic fields and the Diophantine equation $ x\sp{3}+y\sp{3}+z\sp{3}=3$


Author: Manny Scarowsky
Journal: Proc. Amer. Math. Soc. 91 (1984), 351-356
MSC: Primary 11D25; Secondary 11R16, 11R27
DOI: https://doi.org/10.1090/S0002-9939-1984-0744627-7
MathSciNet review: 744627
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Diophantine equation $ {x^3} + {y^3} + {z^3} = 3$ is replaced by a sequence of parametrized Diophantine equations which can be factored in certain cubic fields. A unit in these fields is readily available. Some results about these fields and the parametrized equations are proved.


References [Enhancements On Off] (What's this?)

  • [1] L. J. Mordell, Diophantine equations, Academic Press, New York, 1969. MR 0249355 (40:2600)
  • [2] H. Cohn, A classical invitation to algebraic numbers and class fields, Springer-Verlag, Berlin and New York, 1978. MR 506156 (80c:12001)
  • [3] I. O. Angell, A table of complex cubic fields, Bull. London Math. Soc. 5 (1973), 37-38. MR 0318099 (47:6648)
  • [4] J. C. P. Miller and M. F. C. Woolett, Solutions of the Diophantine equation $ {x^3} + {y^3} + {z^3} = k$, J. London Math. Soc. 28 (1955), 101-110.
  • [5] L. J. Mordell, On an infinity of integer solutions of $ a{x^3} + a{y^3} + b{z^3} = b{c^3}$, J. London Math. Soc. 28 (1955), 111-113. MR 0067917 (16:798a)
  • [6] D. H. Lehmer, On the Diophantine equation $ {x^3} + {y^3} + {z^3} = 1$, J. London Math. Soc. 28 (1955), 275-280. MR 0078397 (17:1187c)
  • [7] H. J. Stender, Über die Grundenheit für spezielle unendlichen Klassen reiner kubischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 33 (1969), 203-215. MR 0260705 (41:5329)
  • [8] P. Samuel, Théorie algébrique des nombres, Hermann, Paris, 1967. MR 0215808 (35:6643)
  • [9] D. Shanks, The simplest cubic fields, Math. of Comp. 28 (1974), 1137-1152. MR 0352049 (50:4537)
  • [10] O. Hemer, Notes on the Diophantine equation $ {y^2} - k = {x^3}$, Ark. Math. 3 (1954), 67-77. MR 0061115 (15:776h)
  • [11] L. Bernstein, On units and fundamental units, J. Reine Angew. Math. 257 (1972), 129-145. MR 0323755 (48:2111)
  • [12] B. Setzer, Units in totally complex $ {S_3}$ fields, J. Number Theory 10 (1978), 244-249. MR 0480422 (58:585)
  • [13] J. W. S. Cassels and A. Frohlich, Algebraic number theory, Academic Press, London.
  • [14] H. Lang and R. Schertz, Kongruenzen zwischen Klassenzahlen quadratischer Zahlkörper, J. Number Theory 8 (1976), 352-365. MR 0419407 (54:7428)
  • [15 K] Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258. MR 0083013 (18:644d)
  • [16] F. Gerth III, Ranks of$ 3$-class groups of non-Galois cubic fields, Acta Arith. 30 (1976), 307-322. MR 0422198 (54:10190)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11D25, 11R16, 11R27

Retrieve articles in all journals with MSC: 11D25, 11R16, 11R27


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0744627-7
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society