MINIMAL CYCLOTOMIC SPLITTING FIELDS FOR GROUP CHARACTERS

R. A. MOLLIN

ABSTRACT. Let F be a finite Galois extension of the rational number field Q, and let G be a finite group of exponent n with absolutely irreducible character χ. This paper provides sufficient conditions for the existence of a minimal degree splitting field L with $F(\chi) \subseteq L \subseteq F(\varepsilon_n)$, where ε_n is a primitive nth root of unity. We obtain as immediate corollaries known results pertaining to this question in the literature. Moreover we obtain necessary and sufficient conditions for the existence of a minimal splitting field L as above which is cyclic over $F(\chi)$. The machinery we use to achieve the above results are certain genus numbers of $F(\chi)$.

1. Introduction. Let F be a finite Galois extension of Q, G a finite group of exponent n, χ a complex irreducible character of G, and let $A(\chi, F)$ denote the simple component of FG corresponding to χ. A finite extension L of $F(\chi)$ is a splitting field for χ over F if the class of $A(\chi, F) \otimes_{F(\chi)} L$ is equivalent to L in the Brauer group $B(L)$ of L. The minimum of the degrees $|L : F(\chi)|$ of L over $F(\chi)$ taken over all splitting fields L of χ is the Schur index $m_F(\chi)$ of χ over F. It is the purpose of this paper to provide sufficient conditions for the existence of a splitting field L of χ such that $F(\chi) \subseteq L \subseteq F(\varepsilon_n)$ and $|L : F(\chi)| = m_F(\chi)$. Under a suitable restriction we generalize this to a field F of characteristic zero. Moreover, we are able to provide necessary and sufficient conditions for such an L to exist, where L is cyclic over $F(\chi)$.

The above results continue work begun in [Mo 1] and advances [Fe 1], [Fe 2] and the more recent [Sp-T].

2. Notation and preliminaries. Relevant notation or concepts not discussed may be found in [Mo 1]. Let K be a finite Galois extension of an algebraic number field F with Galois group $G(K/F)$. When $G(K/F)$ is abelian we adopt the convention of [Mo 1] with respect to decomposition of primes; i.e. if p is a K-prime above the F-prime p then any reference to the decomposition of p in K over F shall be made instead to the decomposition of p in K/F. Moreover, in this case we write $K_\hat{p}$ for $K_{p\hat{}}$, the completion of K at \hat{p}.

Now let $A(\chi, F)$ be as in §1; then if \hat{q} and \hat{q}' are $F(\chi)$-primes above the same rational prime q then $A(\chi, F) \otimes_{F(\chi)} F(\chi)_{\hat{q}}$ and $A(\chi, F) \otimes_{F(\chi)} F(\chi)_{\hat{q}'}$ have the same index (we proved this in [Mo 2]–[Mo 3] as a generalization of [Be]). Denote the common value of all indices of $A(\chi, F) \otimes_{F(\chi)} F(\chi)_{\hat{q}}$ for all $F(\chi)$-primes \hat{q} above a given rational prime q by $\text{ind}_q(A(\chi, F))$ called the q local index of $A(\chi, F)$.

Received by the editors April 25, 1983.

1980 Mathematics Subject Classification. Primary 20C05.

The author’s research is supported by N.S.E.R.C. Canada.

©1984 American Mathematical Society
0002-9939/84 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
For an algebraic number field F we denote the genus field of F by \tilde{F} which is defined as the maximal abelian extension of F, such that \tilde{F} is the composite of an abelian extension of Q with F and is unramified at all finite primes (see [Ish] for details). $|\tilde{F} : F| = g(F)$ is called the genus number of F. We define the nth genus field for a given positive integer n as $F^{(n)} = \tilde{F} \cap F(\varepsilon_n)$. We call $|F^{(n)} : F| = g_n(F)$ the nth genus number of F. It is this number which will provide the machinery for the major result of this paper.

3. Splitting fields.

Lemma 1. Let F be a finite Galois extension of Q, and let n be a positive integer. Suppose that $G = G(F(\varepsilon_n)/F)$ is cyclic of prime power order. Then we have that $g_n(F) = |T^{(q)} : F|$ where $T^{(q)}$ is the inertia field of an F-prime q having nontrivial ramification in $F(\varepsilon_n)$. Furthermore if n is divisible by at least two distinct primes then $g_n(F) = |Z^{(q)} : F|$ where $Z^{(q)}$ is the decomposition subfield of $F(\varepsilon_n)$ over F at q.

Proof. The inertia subgroup $I^{(q)}$ of G at q is contained in $G(F(\varepsilon_n)/F(\varepsilon))$ where ε is a root of unity in $F(\varepsilon_n)$ having largest possible order relatively prime to $p = q \cap Q$ (see [Nark, Theorem 5.9, p. 210]). Since G is cyclic of prime power order it follows that only F-primes above p may ramify in $F(\varepsilon_n)$. Since F is Galois over Q then $I^{(q)} = I^{(q')}$ for any F-primes q and q' above p. Hence $g_n(F) = |T^{(q)} : F|$. Now suppose $n = q^at$ where q and t are relatively prime, $t > 1$, and q lies above p. Then $F_q(\varepsilon_t)$ is nontrivial cyclic unramified over F_q if $Z^{(q)} \neq T^{(q)}$. Moreover by hypothesis $G(F_q(\varepsilon_{q^a})/F_q)$ is nontrivial. Hence $G(F_q(\varepsilon_n)/F_q)$ is generated by at least 2 elements. Since $G(F_q(\varepsilon_n)/F_q) \cong G(F(\varepsilon_n)/Z^{(q)})$, the decomposition subgroup of G at q, then G is not cyclic, a contradiction. Hence $g_n(F) = |Z^{(q)} : F|$. □

Now we set the stage for the main result. Let χ be a complex irreducible character of a finite group of exponent n, and set $A = A(\chi, F)$ where F is finite Galois over Q. Let $S(A)$ be defined as the set of all rational primes q such that $\text{ind}_q(A) > 1$. We now define, for convenience sake, a field L to have (n, F)-splitting property provided that L is a splitting field of χ such that $F(\chi) \subseteq L \subseteq F(\varepsilon_n)$ and $|L : F(\chi)| = m_F(\chi)$. Moreover let $K = F(\chi)$ henceforth.

Theorem 1. Let χ be a complex irreducible character of a finite group of exponent n, and set $A = A(\chi, F)$ where F is a finite Galois extension of Q such that if K is real then $2 \notin S(A)$. If for all finite odd $q \in S(A)$ we have that $|g_q(K)|_p \leq |m_F(\chi)/\text{ind}_q(A)|_p$ for each $p|m_F(\chi)$ then there exists an L with (n, F)-splitting property.

Proof. By the same reasoning as in the proof of [Mo 1] we may assume that $m_F(\chi) = p^a$ where p is prime. Let $q \in S(A)$ where q is finite odd. Suppose furthermore that $\text{ind}_q(A) = p^b$. From [Ya, Theorem 4.7, p. 46] we may deduce that there exists a subfield $M^{(q)} \subseteq K(\varepsilon_q)$ such that $|M^{(q)} : K_{\hat{q}}| = \text{ind}_q(A)$ where \hat{q} is any K-prime above q. However $|M^{(q)} : K| = |M^{(q)} : T^{(q')}| |T^{(q')} : K| = p^b |T^{(q')} : K| = p^b |g_q(K)|_p$ by hypothesis we have $|M^{(q)} : K| \leq p^a$.

Therefore, for each finite odd \(q \in S(A) \) we have a field \(M^{(q)} \) such that \(M^{(q)} \) splits \(\chi \) at \(q \) and \(|M^{(q)} : K| \leq p^a \). By [Ya, Theorem 6.2, p. 89] we have that \(\varepsilon_{p^a} \) is in \(K \); so \(M^{(q)} = K(\theta(q)) \) where \(\theta(q)p^a \in K \).

Now we construct \(L \) according to the contents of \(S(A) \).

Case (1). If all \(q \in S(A) \) are finite odd then choose \(\alpha \) as in [Mo 5]. Therefore \(|K_q^{(\alpha)} : K_q| = \text{ind}_q(A) \) for all \(q \in S(A) \) where \(q \) is any \(K \)-prime above \(q \). However there exists a \(q \in S(A) \) with \(\text{ind}_q(A) = p^a \) so \(L = K(\alpha) \) is the required field.

Case 2. If \(2 \in S(A) \) then by hypothesis \(K \) is nonreal and thus only finite primes are contained in \(S(A) \). By [Ya], \(p^a = 2 \) and \(\sqrt{-1} \) is not in \(K \). Now we choose \(\alpha \) as in the proof of [Mo 1, Theorem 1, p. 108]. Then \(L = K(\alpha) \) is the required field.

Case 3. If \(q \in S(A) \) is infinite then \(K \) must be real so that by hypothesis \(2 \not\in S(A) \). Let \(\alpha' = \prod \theta(q) \) where the product ranges over all finite primes \(q \) in \(S(A) \). If \(K(\alpha') \) is nonreal then choose \(\alpha = \alpha' \) and choose \(\alpha = \sqrt{-1} \cdot \alpha' \) otherwise. Hence \(L = K(\alpha) \) is the required field. \(\square \)

Now we give a sequence of applications of Theorem 1. We anchor them to the theorem as corollaries thereof and for each corollary we maintain the first statement of Theorem 1 as being in force.

Under a suitable restriction we may generalize Theorem 1 to a field \(F \) of characteristic zero.

Corollary 1. Let \(F \) be a field of characteristic zero such that \(m_F(\chi) = m_F(\chi) \) where \(F' = F \cap Q(\varepsilon_n) \). Then there exists a field with \((n,F)\) splitting property if and only if there exists a field with \((n,F')\) splitting property.

Proof. By [Mo 4, Theorem 3.4, p. 473] we have \(A(\chi,F) = A(\chi,Q) \otimes_Q K \). When \(m_F(\chi) = m_F(\chi) \) the result clearly follows. (Note that in general we always have \(m_F(\chi) | m_{F'}(\chi) \).) \(\square \)

The following generalizes [Sp-T, Corollary 5, p. 36] (see also [Mo 1, Corollary 1, p. 110]).

Corollary 2. If \(g(K) \) and \(m_F(\chi) \) are relatively prime then there is a field with \((n,F)\)-splitting property.

Proof. For each prime \(p \) dividing \(m_F(\chi) \) we have \(|g(K)|_p = 1 \). Hence \(|g(K)|_p = 1 \) for each \(q \in S(A) \). \(\square \)

We note that the converse of the above fails. We provide the following counterexample (which corrects [Mo 1, Example 2, p. 111] which was missed in [Mo 5]).

Example 1. Let \(p \) be an arbitrary odd prime and \(q \) a prime with \(q \equiv 1 \) (mod \(p^4 \)) but \(q \not\equiv 1 \) (mod \(p^5 \)). Let

\[
\langle \sigma \rangle = G(Q(\varepsilon_{p^4q}))/Q(\varepsilon_{p^3}) \quad \text{and} \quad \langle \tau \rangle = G(Q(\varepsilon_{p^3q}))/Q(\varepsilon_q).
\]

Set \(\gamma = \sigma^{((q-1)/p^4)} \tau^{p(p-1)} \) and let \(K \) be the fixed field of \(\langle \gamma \rangle \).

Let \(G = \langle x, y, z : x^4 = z^{p^3} = 1, y^{p^4} = z^p, z^p \text{ central}, yzy^{-1} = z^a \text{ and } yxy^{-1} = x^b \rangle \) where \(\varepsilon_{p^3} \rightarrow \varepsilon_{p^3}^a \) and \(\varepsilon_q \rightarrow \varepsilon_q^b \). Set \(A = (Q(\varepsilon_{p^4q})/K, \varepsilon_{p^4}) \), a crossed product algebra (see [Mo 1]) which is a homomorphic image of \(QG \). Therefore there is a complex irreducible character \(\chi \) of \(G \) with \(A = A(\chi,Q) \), and \(K = Q(\chi) \).

As in [Mo 1], \(\text{ind}_q(A) = p = m_Q(\chi) \) and in fact \(S(A) = \{q\} \).
Also since $|G| = p^6 q = n$ then by [Fe 1, Theorem 6, p. 429] there is a field with (n, Q)-splitting property. However $\bar{K} = Q(\epsilon_{p^3}, \theta)$ where $Q(\theta)$ is the unique subfield of $Q(\epsilon_q)$ of degree $(q - 1)/p^3$ over Q; i.e. $p | g(K)$. This completes the example.

The following generalizes [Sp-T, Corollary 7, p. 36].

COROLLARY 3. Let $F(\epsilon_r)$ be the smallest root of unity field with $K \subseteq F(\epsilon_r)$. Suppose p does not divide the ramification index of any \hat{q} above $q \in S(A)$ in $F(\epsilon_r)$ over K, for each $p | m_F(X)$. Then there is a field with (n, F)-splitting property.

PROOF. As in the proof of [Sp-T, Corollary 7, p. 36] we get $|K_{\hat{q}}(\epsilon_q) : K_{\hat{q}}| = |K(\epsilon_q) : K|$. Hence $g_q(K) = 1$. \square

The following corollary which is immediate from the theorem generalizes the main result of [Mo 1, Theorem 1, p. 108].

COROLLARY 4. If K is totally nonreal over Q and if for each prime $p | m_F(\chi)$ we have $|K(\epsilon_q) : K|_p = |K(\epsilon_q) : K_d|_p$ whenever \hat{q} is K-prime above an odd prime $q \in S(A)$ then there is a field with (n, F)-splitting property.

The following uses Corollaries 3 and 4 to give a result which generalizes [Sp-T, Corollary 6, p. 36] which in turn generalized [Mo 1, Corollary 1, p. 110]. ϵ_r is as defined in Corollary 3.

COROLLARY 5. Suppose that $1 = (m_F(\chi), |F(\epsilon_r) : K|, g(K))$. Then there is a field with (n, F)-splitting property.

PROOF. If

$$(m_F(\chi), g(K)) = 1$$

then we proceed as in Corollary 2. If $p | (m_F(\chi), g(K))$ then $p \nmid |F(\epsilon_r) : K|$ and we proceed as in Corollary 3. \square

The next corollary generalizes the main result of [Sp-T, Theorem 3, p. 35].

COROLLARY 6. Suppose that whenever $q \in S(A)$ and $p | \text{ind}_q(A)$ we have $|T^{(q)} : K|_p = 1$ where $T^{(q)}$ is the inertia subfield of $K(\epsilon_q)$ over K at q which lies over q. Then there is a field with (n, F)-splitting property.

PROOF. The hypothesis forces $|g_q(K)|_p = 1$. \square

The converse of Corollary 6 fails as shown in

EXAMPLE 2. Take $p = 3$ and $q = 163$ in Example 1. Then $K(\epsilon_q) = Q(\epsilon_{3^{34} 163})$ and $|K(\epsilon_q) : K| = 3^4$ which is greater than $|K_q(\epsilon_q) : K_q| = 3^3$ since 163 splits in $\bar{K} = Q(\epsilon, \epsilon_{p^3})$ as defined in Example 1. Now as in Example 1 we get $K = Q(\chi)$ for a complex irreducible character χ of G and an $A = A(\chi, Q)$ with $\text{ind}_q(A) = p = m_Q(\chi)$. Moreover there is a field with (n, F)-splitting property where n is the exponent of G. This secures the example.

Now we are able to achieve necessary and sufficient conditions for the existence of a field with (n, F)-splitting property which is cyclic over $F(\chi)$.

THEOREM 2. Let χ, A, $S(A)$, G, n, F and K be as above. Then there is a field L with (n, F)-splitting property such that L is cyclic over K if and only if for each p dividing $m_F(\chi)$ there is a decomposition $G_p = G(K(\epsilon_n)/K)_p$ as a direct product of cyclic groups C_i with fixed field K_i such that for some i, say $i = 1$, we have that
for all \(q \in S(A) \), \(|Z_1^{(q)} : K_1| \leq |m_F(\chi)/\text{ind}_q(A)|_p \) and \(|K(\varepsilon_n) : K_1| \geq |m_F(\chi)|_p \) where \(Z_1^{(q)} \) is the decomposition subfield of \(K(\varepsilon_n) \) over \(K_1 \) at \(q \).

Proof. If such an \(L \) exists then, since \(L \) is cyclic over \(K \), there is a decomposition such that \(L \subseteq \bigcap_{i>1} K_i \) after possibly renumbering the \(K_i \). Now since \(Z_1^{(q)} \cap L \) is the \(p \)-part of the decomposition subfield of \(L \) over \(K \) at \(q \) for each \(q \in S(A) \) then it follows that \(|Z_1^{(q)} : K_1| \leq |m_F(\chi)/\text{ind}_q(A)|_p \). Moreover since \(|K(\varepsilon_n) : K_1| \geq |L : K|_p \) then \(|K(\varepsilon_n) : K_1| \geq |m_F(\chi)|_p \).

Conversely, suppose that we have such a decomposition. Then we may choose \(L \subseteq \bigcap_{i>1} K_i \) such that \(|L_q : K_q| = |\text{ind}_q(A)|_p \) for each \(q \in S(A) \). Now for some \(q \in S(A) \) we have that \(|\text{ind}_q(A)|_p = |m_F(\chi)|_p \) and for this \(q \) we have \(Z_1^{(q)} = K_1 \). Since \(Z_1^{(q)} \cap L = K \) is the decomposition subfield of \(L \) at \(q \) then \(|L : K| = |m_F(\chi)|_p \). □

Now as a consequence of Theorem 2 we easily generalize [Fe 1, Theorem (b), p. 429] which we could not accomplish in [Mo 1]. The above notation remains in force.

Corollary 7. Suppose \(m_F(\chi) \geq 3 \) and \(n = p^a q^b \) for primes \(p < q \) then there exists a cyclic field with \((n,F)\)-splitting property.

Proof. By [Gold-Is] (see also [Mo 6]) \(G_p = G(K(\varepsilon_n)/K)_p \) is not cyclic. Now since \(K(\varepsilon_n) \) is cyclic over \(K \) then there is a decomposition of \(G_p \) as a product of cyclic groups \(C_1 \times C_2 \) with \(K(\varepsilon_n) \) totally ramified over \(K_1 \) at \(q \). □

References

