Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A result concerning additive functions in Hermitian Banach $ \sp{\ast} $-algebras and an application

Author: J. Vukman
Journal: Proc. Amer. Math. Soc. 91 (1984), 367-372
MSC: Primary 46K05
MathSciNet review: 744631
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{A}$ be a complex hermitian Banach $ * $-algebra with an identity element $ e$. Suppose there exists an additive function $ f:\mathcal{A} \to \mathcal{A}$ such that $ f\left( a \right) = - {a^ * }af\left( {{a^{ - 1}}} \right)$ holds for all normal invertible elements $ a \in \mathcal{A}$. We prove that in this case $ f$ is of the form $ f\left( a \right) = f\left( {ie} \right)k$, where $ a = h + ik$. Using this result we generalize S. Kurepa's extension of Jordan-Neumann characterization of pre-Hilbert space.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46K05

Retrieve articles in all journals with MSC: 46K05

Additional Information

Keywords: $ * $-algebra, Banach $ * $-algebra, hermitian Banach $ * $-algebra, $ {B^ * }$-algebra, vector space, module, additive function, $ \mathcal{A}$-bilinear form, $ \mathcal{A}$-quadratic form
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society