UNIFORM ALGEBRAS AND PROJECTIONS
S. J. SIDNEY

ABSTRACT. If M is a closed A-submodule of $C(X)$ where A is a uniform algebra on X which contains a separating family of unimodular functions, and if M is a quotient space of some $C(Y)$, then M is an ideal in $C(X)$. If there is an example of a uniform algebra A on some X such that $A \neq C(X)$ but A is complemented in $C(X)$, then there is such an example with A separable.

1. Statements of results. The following problem was considered by Glicksberg [1]: If A is a uniform algebra on X which is (topologically linearly) complemented in $C(X)$, does it follow that $A = C(X)$? He obtained a number of positive results; subsequent work is summarized in Pelczyński's monograph [2].

We shall prove two results. The first reduces to the solution of a special case of Glicksberg's problem provided $M = A$, $Y = X$, and the given linear mapping is a projection (=idempotent linear transformation) on $C(X)$; the case $M = A$ can be readily deduced from Corollary 5.3 of [2]. The second result says that if the answer to Glicksberg's question is negative for some A, then it is negative for a separable A, a reduction which may prove useful in settling the problem. Recall that a uniform algebra on X is a closed point-separating subalgebra (over C) of $C(X)$ which contains the constant functions.

THEOREM 1. Let A be a uniform algebra on X which contains enough unimodular functions to separate the points of X, and let M be a closed A-submodule of $C(X)$. If M is the range of a continuous linear mapping from some $C(Y)$, then M is an ideal in $C(X)$.

THEOREM 2. Suppose there is a uniform algebra A on some X such that $A \neq C(X)$ but A is complemented in $C(X)$. Then there is a separable uniform algebra \hat{A} on some \hat{X} such that $\hat{A} \neq C(\hat{X})$ but \hat{A} is complemented in $C(\hat{X})$.

If K is a nonempty closed subset of X then the ideal $I = \{ f \in C(X) : f(x) = 0 \ \forall x \in K \}$ is necessarily complemented in $C(X)$ if X is metrizable. However, if $X = \beta\mathbb{Z}$ the Stone-Čech compactification of the integers \mathbb{Z} and if $K = X \setminus \mathbb{Z}$ then I is not complemented in $C(X)$, that is, c_0 is not complemented in l_∞; indeed, c_0 is not even a continuous linear image of l_∞. Thus Theorem 1 has no obvious converse in the nonmetrizable case.

In Theorem 2, separability of \hat{A} is equivalent to metrizability of \hat{X}. The proof will exhibit \hat{A} as a subalgebra of A and \hat{X} as a quotient space of X; thus \hat{A} will be antisymmetric if A is. It will be clear that the proof can be adapted to prove variants of the theorem in which, for example, complementedness is replaced by being a continuous linear image of some $C(Y)$.
2. Proofs. The proof of Theorem 1 is modeled on that of [2, Proposition 4.1].

Proof of Theorem 1. Let $K = \bigcap \{ f^{-1}(0) : f \in M \}$, $I = \{ f \in C(X) : f(x) = 0 \ \forall x \in K \}$. We must show that $M = I$. Suppose $M \neq I$. Then there is $\mu \in M$ not supported entirely in K. Thus there is $g_0 \in M$ not vanishing identically on the support of μ, so $0 \neq g_0 \mu \in A$. Let S denote the multiplicative semigroup of unimodular functions in A. By the Stone-Weierstrass theorem there are u, v in S such that $(g_0 \mu)(u/v) \neq 0$. For $\nu \in M(X) (=\text{regular complex Borel measures on } X)$ let $\nu^* \in M(T)$ (T the unit circle in the complex plane) be $\nu^*(E) = \nu(v^{-1}(E))$, that is, $\int_T f \ d\nu^* = \int_X (f \circ v) \ dv$ for $f \in C(T)$. For each $g \in M$,

$$\int_T z^n d(guv^{-1})^* = \int_X z^n d(guv^{-1} \mu) = \int_X (guv^{-1}) \ d\mu = 0$$

for each positive integer n, so by the F. and M. Riesz theorem, $\Phi g = (guv^{-1} \mu)^*$ lies in $H^1 m$ where m is Lebesgue measure on T and H^1 is the usual Hardy space. Thus Φ maps M into the separable dual $H^1 m$ and is absolutely summing [2, Definition 0.2]. If Ψ is a continuous linear mapping of $C(Y)$ onto M then $\Phi \circ \Psi$ is absolutely summing, so compact [2, Theorem 0.5]; thus by the open mapping theorem Φ is compact, which in turn implies that $a \to (a \circ v_0)g_0$ is compact from the disc algebra to $H^1 m$. This, however, is false: if $0 \neq h \in L^1(m)$ (the role of h being played above by g_0 where $\int_T d(g_0) = \int_X g_0 v^{-1} \ d\mu = 0$) choose integers N_1, N_2 so that $\int z^{N_1} h \ dm = 2\varepsilon > 0$ and (using the Riemann-Lebesgue lemma) $\int z^n h \ dm < \varepsilon$ whenever $|n| > N_2 > |N_1|$; if n_1, n_2 are distinct (positive) integers then

$$\|z^{2n_1}h_m - z^{2n_2}h_m\|_{M(T)} = \|z^{N_1}h_m - z^{2n_2}h_m\|_{M(T)} \geq \left| \int z^{N_1} h \ dm \right| - \left| \int z^{N_1+2(n_2-n_1)}h \ dm \right| > 2\varepsilon - \varepsilon = \varepsilon,$$

contradicting the alleged compactness.

Proof of Theorem 2. Let P be a continuous projection on $C(X)$ with range A. We build increasing sequences $A_0 \subset A_1 \subset \cdots \subset A_n \subset \cdots$ and $B_0 \subset B_1 \subset \cdots \subset B_n \subset \cdots$ of separable closed subalgebras of $C(X)$ with B_n selfadjoint, $A_n \subset B_n \cap A$, and $P(B_n) \subset A_{n+1}$ as follows. Choose $h \in A$ such that $h \notin A$. Let A_0 be the smallest closed subalgebra of $C(X)$ that contains h and 1. Then successively let B_n be the closed selfadjoint subalgebra of $C(X)$ generated by A_n, and let A_{n+1} be the closed subalgebra of $C(X)$ generated by $P(B_n)$. Let A' and B' denote the respective closures of $\bigcup A_n$ and $\bigcup B_n$. These are separable closed subalgebras of $C(X)$, B' is selfadjoint while A' is not ($h \in A' \subset A$), $A' \subset B'$ and $P(B') = A'$. If \bar{X} is obtained from X by collapsing each common set of constancy for A' (equivalently, for B') to a point, then B' and A' become the required $C(\bar{X})$ and A.

References

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268