Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ L\sp{2}{\rm\sb{}loc}$-boundedness for a class of singular Fourier integral operators


Author: A. El Kohen
Journal: Proc. Amer. Math. Soc. 91 (1984), 389-394
MSC: Primary 47G05; Secondary 35S05, 42A38
DOI: https://doi.org/10.1090/S0002-9939-1984-0744636-8
MathSciNet review: 744636
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider operators of the form $ \int_{-\infty }^\infty {{F_t}} \phi \left( t \right)dt$ where $ {F_t}$ is a $ 1$-parameter family of Fourier integral operators and $ \phi \left( t \right)dt$ a tempered distribution on the real line. We extend the result given in [1].


References [Enhancements On Off] (What's this?)

  • [1] A. El Kohen, On Fourier integral operators, Proc. Amer. Math. Soc. 85 (1982), 567-571. MR 660606 (84a:42030)
  • [2] F. Treves, Pseudo-differential and Fourier integral operators, vols. 1 and 2, The Univ. Ser. in Math., Plenum Press, New York, 1980.
  • [3] S. Wainger and G. Weiss (eds.), Proc. Sympos. Pure Math., vol. 35, Part 1, Amer. Math. Soc., Providence, R.I., 1979.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47G05, 35S05, 42A38

Retrieve articles in all journals with MSC: 47G05, 35S05, 42A38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0744636-8
Keywords: Fourier transform, operator, singular integral
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society