Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spectra of constructs of a system of operators


Authors: Angel Carrillo and Carlos Hernández
Journal: Proc. Amer. Math. Soc. 91 (1984), 426-432
MSC: Primary 47A60; Secondary 46M05, 47A10
DOI: https://doi.org/10.1090/S0002-9939-1984-0744643-5
MathSciNet review: 744643
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper describes the spectrum and the upper and lower Fredholm spectra of $ (n + m)$-tuples $ (F({A_1}), \cdots ,F({A_n}),G({B_1}), \cdots ,G({B_m}))$ of operators, where $ ({A_i})$ and $ ({B_j})$ are systems of operators in two Hilbert spaces $ {\mathcal{H}_1}$ and $ {\mathcal{H}_2}$, and $ F$ and $ G$ are certain linear operators defined on $ \mathcal{L}({\mathcal{H}_i})$. Using spectral mapping theorems the spectra of operators constructed by the action of a polynomial on a system $ (F({A_1}), \cdots ,F({A_n}),G({B_1}), \cdots ,G({B_m}))$ is obtained. In particular, the spectra of the elementary operator and tensor products of operators is determined.


References [Enhancements On Off] (What's this?)

  • [1] J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309-314. MR 0454676 (56:12925)
  • [2] A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-169. MR 0188786 (32:6218)
  • [3] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin algebras and algebras of operators on Banach spaces, Lecture Notes in Pure and Appl. Math., Vol. 9, Dekker, New York, 1974. MR 0415345 (54:3434)
  • [4] R. Curto, The spectrum of elementary operators, Abstracts Amer. Math. Soc. 2 (1981), 552.
  • [5] L. A. Fialkow, Elements of spectral theory for generalized derivations. II, Canad. J. Math. 33 (1981), 1205-1231. MR 638376 (83b:47045)
  • [6] -, Essential spectra of elementary operators, Trans. Amer. Math. Soc. 267 (1981), 157-173. MR 621980 (82i:47006)
  • [7] R. Harte, Spectral mapping theorems, Proc. Roy. Irish. Acad. Sect. A 72 (1972), 89-107. MR 0326394 (48:4738)
  • [8] -, Spectral mapping theorems on a tensor product, Bull. Amer. Math. Soc. 79 (1973), 367-372. MR 0322510 (48:872)
  • [9] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, Heidelberg and New York, 1976. MR 0407617 (53:11389)
  • [10] G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32-41. MR 0104167 (21:2927)
  • [11] E. de Oteyza, Sobre la figura espectral del producto tensorial de dos operadores, M. S. Thesis, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, 1980.
  • [12] C. Pearcy, Some recent developments in operator theory, CBMS Regional Conf. Ser. in Math., no. 36, Amer. Math. Soc., 1978. MR 0487495 (58:7120)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A60, 46M05, 47A10

Retrieve articles in all journals with MSC: 47A60, 46M05, 47A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0744643-5
Keywords: Spectrum, joint spectrum, upper and lower Fredholm spectra, essential spectrum, Fredholm operator, spectral mapping theorem, elementary operator, tensor products
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society