Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Primitive obstructions in the cohomology of loopspaces


Author: Frank Williams
Journal: Proc. Amer. Math. Soc. 91 (1984), 477-480
MSC: Primary 55P35; Secondary 55P45, 55S20
DOI: https://doi.org/10.1090/S0002-9939-1984-0744652-6
MathSciNet review: 744652
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ and $ X'$ be $ H$-spaces. If $ f:\Omega X \to \Omega X'$ is an $ H$-map then the obstruction to $ f$ being a homotopy-commutative map is a subset $ \left\{ {{c_2}(f)} \right\} \subset \left[ {\Omega X\Lambda \Omega X;{\Omega ^2}X'} \right]$. In this paper we prove: $ If[f]$ is in the image of the composition

$\displaystyle \left[ {{P_{k + m}}\Omega X;X'} \right] \to \left[ {\Sigma \Omega X;X'} \right]\mathop \to \limits^ \approx \left[ {\Omega X;\Omega X'} \right],$

then $ \left\{ {{c_2}(f)} \right\}$ is in the image of the composition

$\displaystyle \left[ {{P_k}\Omega X\Lambda {P_m}\Omega X;X'} \right] \to \left[... ...p \to \limits^ \approx \left[ {\Omega X\Lambda \Omega X;{\Omega ^2}X'} \right].$

Consequently if $ \alpha \in {H^n}(\Omega X;{Z_p})$ is an $ {A_3}$-class in the sense of Stasheff then each element of $ \left\{ {{c_2}(f)} \right\}$ is of the form $ \sum {{{c'}_i}} \otimes {c''_i}$ where the $ {c''_i}$ are primitive.


References [Enhancements On Off] (What's this?)

  • [1] J. Lin, Two torsion and the loop space conjecture, Ann. of Math. (2) 115 (1982), 35-91. MR 644016 (83b:55007)
  • [2] -, A seven-connected finite $ H$-space is fourteen-connected (to appear).
  • [3] J. Stasheff, $ H$-spaces from a homotopy point of view, Lecture Notes in Math., vol. 161, Springer-Verlag, Berlin and New York, 1970. MR 0270372 (42:5261)
  • [4] M. Sugawara, On the homotopy-commutativity of groups and loop spaces, Mem. Colloq. Sci. Univ. Kyoto Math. Ser. A 33 (1960/61), 257-269. MR 0120645 (22:11394)
  • [5] E. Thomas, Steenrod squares and $ H$-spaces, Ann. of Math. (2) 77 (1963), 306-317. MR 0145526 (26:3057)
  • [6] F. Williams, Higher homotopy commutativity, Trans. Amer. Math. Soc. 139 (1969), 191-206. MR 0240818 (39:2163)
  • [7] A. Zabrodsky, Cohomology operations and homotopy commutative $ H$-spaces, The Steenrod Algebra and its Applications, Lecture Notes in Math., vol. 168, Springer-Verlag, Berlin and New York, 1970, pp. 308-317. MR 0271934 (42:6815)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55P35, 55P45, 55S20

Retrieve articles in all journals with MSC: 55P35, 55P45, 55S20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0744652-6
Keywords: $ H$-space, homotopy-commutativity, obstruction
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society