Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Groups of permutation projective dimension two

Author: James E. Arnold
Journal: Proc. Amer. Math. Soc. 91 (1984), 505-509
MSC: Primary 20J06; Secondary 18G20
MathSciNet review: 746077
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In previous papers we developed a version of homological algebra for $ Z[G]$ modules ($ G$ a finite group) using summands of permutation modules in place of projective modules. The resulting theory is more discriminating than the usual homological algebra. For example, an f.g. $ Z$-torsion free $ Z[G]$ module is either projective or has infinite projective dimension, whereas for $ G$ cyclic, all f.g. $ Z[G]$ modules have permutation projective dimension one. In this paper we apply results of Endo and Miyata on permutation projective modules to characterize groups of dimension two.

References [Enhancements On Off] (What's this?)

  • [1] J. E. Arnold, Jr., A generalized Cartan isomorphism for the Grothendieck group of a finite group, J. Pure Appl. Algebra 12 (1978), 225-234. MR 501950 (80a:18012)
  • [2] -, Homological algebra based on permutation modules, J. Algebra 70 (1981), 250-260. MR 618392 (83k:20056)
  • [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [4] S. Endo and T. Miyata, On a classification of the function fields of algebraic tori, Nagoya Math. J. 56 (1975), 85-104. MR 0364203 (51:458)
  • [5] -, Integral representations with trivial first cohomology groups, preprint.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20J06, 18G20

Retrieve articles in all journals with MSC: 20J06, 18G20

Additional Information

Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society