ON THE RATIONALITY OF THE VARIETY OF SMOOTH RATIONAL SPACE CURVES WITH FIXED DEGREE AND NORMAL BUNDLE

EDOARDO BALLICO

Abstract. Let \(S_{n,a} \) be the variety of smooth, rational curves of degree \(n \) in \(\mathbf{P}^3 \) whose normal bundle has a factor of degree \(2n - 1 + a \) and a factor of degree \(2n - 1 - a \). In this paper we prove that \(S_{n,a} \) is rational if \(n - a \) is even and \(a > 0 \).

We work over \(\mathbb{C} \). Let \(\hat{S}_{n,a} \subset \text{Hilb} \mathbf{P}^3 \) be the set of smooth, rational curves in \(\mathbf{P}^3 \) of degree \(n \) whose normal bundle splits with a summand of degree \(2n - 1 - a \) and another of degree \(2n - 1 + a \). Eisenbud and Van de Ven [1, 2] proved that for \(0 \leq a \leq n - 4 \), \(\hat{S}_{n,a} \) is not empty, irreducible and of dimension \(4n - 2a + 1 \) (if \(a > 0 \)). Let \(S_{n,a} \) be the set of embeddings \(f: \mathbf{P}^1 \to \mathbf{P}^3 \) with \(f(\mathbf{P}^1) \in \hat{S}_{n,a} \). They proved in [2] that \(S_{n,a} \) is irreducible, rational and, if \(a > 0 \), of dimension \(4n - 2a + 4 \). \(\text{PGL}(2) = \text{Aut}(\mathbf{P}^1) \) acts naturally on \(S_{n,a} \) without fixed points. \(\hat{S}_{n,a} \) is the quotient of \(S_{n,a} \) by this action and the natural map \(S_{n,a} \to \hat{S}_{n,a} \) makes \(S_{n,a} \) a principal locally isotrivial bundle over \(\hat{S}_{n,a} \) with structural group \(\text{PGL}(2) \) (see Serre [6] for this notion).

In the introduction to [2] Eisenbud and Van de Ven raised the question of the rationality of \(\hat{S}_{n,a} \). Here we prove the following

Theorem. If \(a > 0 \) and \(n - a \) is even, then \(\hat{S}_{n,a} \) is rational.

The proof of this theorem uses only the construction in [2, §5], elementary properties of conic bundles (or \(\mathbf{P}^1 \)-bundles) with smooth fibers and smooth base, and the definition of stably rational varieties due to Kollar and Schreyer [4]. An irreducible variety \(V \) is said to be stably rational of level \(k \) if \(V \times \mathbf{P}^k \) is rational. For the elementary properties of conic bundles we need to see Serre [6]; we also found useful [3, 5].

We write \(\hat{S}_n \) for the variety of smooth, rational curves of degree \(n \) in \(\mathbf{P}^3 \) and \(S_n \) for the set of embeddings of degree \(n \) of \(\mathbf{P}^1 \) into \(\mathbf{P}^3 \). \(S_n \) is rational and \(S_n \to \hat{S}_n \) is a principal locally isotrivial bundle with structure group \(\text{PGL}(2) \). Since \(S_n \) (resp. \(S_{n,a} \)) is rational, if the natural map \(p: S_n \to \hat{S}_n \) (resp. \(S_{n,a} \to \hat{S}_{n,a} \)) has a rational section,
then \(\hat{S}_n \) (resp. \(\hat{S}_{n,a} \)) is stably rational of level 3. The rationality of \(S_{n,a} \) was proved in [2, p. 97].

Lemma 1. Assume \(n \) odd. Then for every \(x \in \hat{S}_n \), there exists a rational section of \(p \) defined at \(x \).

Proof. Since \(\hat{S}_n \) is contained in \(\text{Hilb} \, P_3 \), we have a universal curve \(C \to \hat{S}_n \) with an inclusion \(i: C \to \hat{S}_n \times P_3 \) over \(\hat{S}_n \). \(C \) is a conic bundle with a smooth base. Since \(n \) is odd, this conic bundle is locally trivial in the Zariski topology [2]. Thus there is a neighborhood \(U \) of \(x \) and an \(U \)-isomorphism \(h: U \times P_1 \to C \). The map \(i \circ h \) gives the section of \(p \) defined on \(U \). □

We write \(R_n \) for the set of maps of degree \(n \) of \(P_1 \) into \(P_3 \). Again \(\text{PGL}(2) \) acts on \(R_n \) and we write \(\hat{R}_n \) for its quotient. Since we are interested only at birational geometry, there is no problem here; we can substitute \(R_n \) with \(S_n \) if we want. In [2] a key point was the map \(G: S_{n,a} \to \hat{R}_{n-a-1} \) constructed in the following way. Fix \(f \in S_{n,a} \).

\[
N_f := f^* \left(N_{f(P_1/P_3)} \right) \cong \mathcal{O}_{P_1}(2n - 1 - a) \oplus \mathcal{O}_{P_1}(2n - 1 + a)
\]

is a quotient of \(f^*(TP_3) \). Thus the subline bundle \(\mathcal{O}_{P_1}(2n - 1 + a) \) defines a rank-2 subbundle \(V_f \) of \(f^*(TP_3) \). The map \(G(f): P_1 \to \hat{R}_n \) is constructed by taking for \(G(f)(t) \) the plane in \(P_3 \) which is determined by \(V_{f,t} \subset TP_{3,f(t)} \). Note that the map \(G \) descends to a map \(\hat{G}: \hat{S}_{n,a} \to \hat{R}_{n-a-1} \) such that, for \(0 < a \leq n - 4 \) we have the following commutative diagram:

\[
\begin{array}{ccc}
S_{n,a} & \overset{G}{\longrightarrow} & R_{n-a-1} \\
\downarrow q & & \downarrow g \\
\hat{S}_{n,a} & \overset{\hat{G}}{\longrightarrow} & \hat{R}_{n-a-1} \\
\end{array}
\]

Eisenbud and Van de Ven [2, p. 97] proved that \(G \) is birationally the projection of a product with fiber rational of dimension \(2a + 5 \). If \(n - a \) is even, by Lemma 1 \(g \) has a rational section. Thus \(\hat{R}_{n-a-1} \) is stably rational of level 3, \(\hat{G} \) is birationally a product with fiber \(P_{2a+5} \) and \(\hat{S}_{n,a} \) is rational. This concludes the proof of Theorem 1.

If \(n - a \) is odd, \(a > 0 \), we do not know very much. A trick easily gives the following

Proposition 1. Assume \(a > 0 \). Then \(\hat{S}_{n,a} \) is covered by rational subvarieties of codimension 2.

Proof. Fix a point \(O \in P_1 \) and a point \(P \) in \(P_3 \). Let \(A_n \) be the set of embeddings \(f \) of \(P_1 \) into \(P_3 \) with \(f(O) = P \) and \(\text{deg}(f(P_1)) = n \). \(A_n \) is rational. The affine group of projective transformations of \(P_1 \) fixing \(O \) acts on \(A_n \) and let \(\hat{A}_n \subset \text{Hilb} \, P_3 \) be the quotient. \(A_n \) is the subset of \(S_n \) formed by curves through \(P \). The map \(A_n \to \hat{A}_n \) has always a rational section. This follows from the speciality of the affine group [3, Lemme 2.3]. Alternatively the restriction to \(\hat{A}_n \) of the conic bundle of Lemma 1 comes from a vector bundle since the point \(P \) defines a line bundle on \(p^{-1}(\hat{A}_n) \) with degree one on every fiber.
Thus \tilde{A}_{n-a-1} is stably rational of level 2 and $\tilde{G}^{-1}(\tilde{A}_{n-a-1})$ has a rational section. Thus $\tilde{G}^{-1}(\tilde{A}_{n-a-1})$ is a rational subvariety of codimension 2 of $\tilde{S}_{n,a}$. □

For $a = 0$ the same method gives only that \tilde{S}_n is covered by codimension 2 subvarieties which are stably rational of level 2.

REFERENCES

4. J. Kollar and F. O. Schreyer, The moduli of curves is stably rational for $g \leq 6$ (preprint).

Department of Mathematics, Scuola Normale Superiore, 56100 Pisa, Italy