RATIOS OF DUAL GENERIC DEGREES
OF A FINITE COXETER GROUP
DEAN ALVIS

ABSTRACT. A formula is obtained for the ratio of dual generic degrees of a
finite Coxeter group.

1. Introduction. The purpose of this paper is to determine the ratio of the
generic degrees corresponding to dual irreducible characters of a finite Coxeter
group. These ratios could, of course, be found on a case by case basis, since the
generic degrees are now known (see [2, 1]). We obtain a uniform formula for all
cases (Corollary 2 below), which expresses the ratio in terms of the character table
of the Coxeter group.

The present investigation started while the author was working with G. Lusztig
on the generic degrees for type H_4 [1]. See §4 for a general result related to such
calculations. The proof of Theorem 1 below was inspired by the proof of Lemma
1.11 of Lusztig's paper [9], which establishes the one variable case. The present
methods apply to generic degrees in several variables.

The author wishes to thank the referee for several helpful comments.

2. A preliminary result. Throughout this paper (W, S) is a finite Coxeter
system, with set of distinguished generators S and length function $l: W \to \mathbb{N}$.
Let R be the set of W-conjugates of elements of S, and let $\{u_C\}$ be a set of
indeterminates, one for each conjugacy class $C \subseteq R$. Define $u_s = u_C$ if $s \in S \cap C$.
Let K be a field containing $\mathbb{Q}(\{u_C\})$. The generic ring A of (W, S) over K is the
K-algebra with basis elements $T_w, w \in W$, and multiplication determined by

\begin{align}
T_s^2 &= u_s T_1 + (u_s - 1) T_s & \text{if } s \in S, \\
T_w T_{w'} &= T_{ww'} & \text{if } l(w) + l(w') = l(ww').
\end{align}

It is known that A is a separable K-algebra with unit element T_1.

Let $s(1) \cdots s(l), \ l = l(w)$, be a reduced expression for $w \in W$. Define
$\varepsilon_w = \text{sign}(w) = (-1)^l, \ u_w = u_{s(1)} \cdots u_{s(l)}$, and $\hat{T}_w = \varepsilon_w u_w T_{w^{-1}}$. Then

\begin{align}
\hat{T}_w &= \varepsilon_w (T_{s(1)} - u_{s(1)} + 1) \cdots (T_{s(l)} - u_{s(l)} + 1)
\end{align}

by (1). The K-linear extension $a \to \hat{a}$ of $T_w \to \hat{T}_w$ is an involutory automorphism
of A (see [6]).

If $a, b \in A$ and $ab = \sum \alpha_w T_w, \ \alpha_w \in K$, set $B(a, b) = \alpha_1$. It is known that B
is a symmetric, associative nondegenerate K-bilinear form on A, with dual bases

\begin{align}
T_w = \varepsilon_w (T_{s(1)} - u_{s(1)} + 1) \cdots (T_{s(l)} - u_{s(l)} + 1)
\end{align}

by (1). The K-linear extension $a \to \hat{a}$ of $T_w \to \hat{T}_w$ is an involutory automorphism
of A (see [6]).

If $a, b \in A$ and $ab = \sum \alpha_w T_w, \ \alpha_w \in K$, set $B(a, b) = \alpha_1$. It is known that B
is a symmetric, associative nondegenerate K-bilinear form on A, with dual bases
{Tw}, \{u_w^{-1}T_{w^{-1}}\} \ [4, 5.12]. Following \ [7\] we write
\[T_y^{-1} = \sum_{x \in W} u_x^{-1}\overline{R}_{x,y}T_x \]
for \(\overline{R}_{x,y} \in K \). Note \(\overline{R}_{x,y} = B(T_z^{-1}, T_y^{-1}) \).

Let \(w_0 \) be the longest element of \(W \). If \(x \in W \), then \(l(x) + l(x^{-1}w_0) = l(w_0) \). Therefore
\[\varepsilon_x \varepsilon_{x^{-1}w_0} = \varepsilon_{w_0}, \quad u_xu_{x^{-1}w_0} = u_{w_0}, \quad \text{and} \quad T_xT_{x^{-1}w_0} = T_{w_0}. \]

We require the following result, which is similar to \ [7, 2.1(iv)] \.

LEMMA 1. \(R_{w_0y,w_0x} = R_{x^{-1}y^{-1}} \).

PROOF. We have \(R_{w_0y,w_0x} = B(T_y^{-1}w_0, T_{x^{-1}w_0}) \). Since
\[T_y^{-1}w_0 = T_y^{-1}w_0 \quad \text{and} \quad T_{x^{-1}w_0} = T_{w_0}^{-1}T_x, \]
\[B(T_y^{-1}w_0, T_{x^{-1}w_0}) = B(T_y^{-1}, T_x). \]
As \(B(T_y^{-1}, T_x) = \overline{R}_{x^{-1}y^{-1}} \), the proof is complete.

3. The main results. In this section we assume that \(K \) is a splitting field for \(A \). Let \(V \) be a simple \(A \)-module, with representation \(\rho : A \to \text{End}_K(V) \) and character \(\chi \in \text{Irr} \ A \). The **generic degree** \(d_\chi \) is defined by
\[d_\chi = \frac{\dim V}{\sum_{w \in W} u_w^{-1}T_w \chi(T_w^{-1})}, \]
where \(P = \sum_w u_w \) is the Poincaré polynomial of \((W, S) \) \ [3\]. The primitive central idempotent of \(A \) corresponding to \(\chi \) is
\[\varepsilon_\chi = \frac{d_\chi}{P} \sum_{w \in W} u_w^{-1}T_w \chi(T_w^{-1})T_w \]
[5, 9.17]. Define an endomorphism \(E(\rho) \) of \(V \) by
\[E(\rho) = \sum_{w \in W} u_w^{-1}T_w \chi(T_w^{-1})\rho(T_w^{-1}w_0). \]

The **dual** \(\hat{\rho} \) of \(\rho \) is given by \(\hat{\rho}(a) = \rho(\hat{a}) \), \(a \in A \). Note that \(\hat{\rho} \) is an irreducible representation of \(A \) with character \(\hat{\chi}(a) = \chi(\hat{a}). \) If \(\chi \) corresponds to \(\chi_0 \in \text{Irr} \ W \) under a specialization \(u_\alpha \to 1 \) (see \ [4, 7.1\]), then \(\hat{\chi} \) corresponds to sign\(\otimes \chi_0 \) under the same specialization by \ (2\). Let \(E(\hat{\rho}) \) be defined as in \ (4\), with \(\hat{\rho}, \hat{\chi} \) replacing \(\rho, \chi \).

LEMMA 2. \(E(\hat{\rho}) = \varepsilon_{w_0} E(\rho) \).

PROOF. Since \((T_y^{-1}w_0) = \varepsilon_{w_0y}u_{w_0y}^{-1}T_{w_0y} \), we have
\[E(\hat{\rho}) = \sum_{y \in W} u_y^{-1} (\varepsilon_y u_{y}^{-1}T_y^{-1})\rho(\varepsilon_{w_0y}u_{w_0y}^{-1}T_{w_0y}) \]
\[= \varepsilon_{w_0} \sum_{x,y \in W} u_x^{-1}\overline{R}_{x^{-1}y^{-1}} \chi(T_{x^{-1}})\rho(u_{w_0y}^{-1}T_{w_0y}). \]
The proof is completed by applying Lemma 1 and the identity
\[\sum_{y \in W} u_{w_0 y}^{-1} R_{w_0 y, w_0 z} T_{w_0 y} = T_{x^{-1} w_0}^{-1}. \]

Theorem 1. Suppose V is a simple A-module with character χ. Then $T_{w_0}^2$ acts on V as the scalar $u_{w_0} (d_\chi/d_\chi)$.

Proof. Since $T_{w_0}^{-1} \circ T_{w_0} = T_{w_0}^{-1} T_{w_0}$ and $\rho(\alpha e_\chi) = \rho(\alpha), \alpha \in A$, we have $E(\rho) = (P/d_\chi) \rho(T_{w_0}^{-1})$ by (3) and (4). Similarly, $E(\hat{\rho}) = (P/d_\hat{\chi}) \hat{\rho}(T_{w_0}^{-1})$. Also, $\hat{\rho}(T_{w_0}^{-1}) = \varepsilon_{w_0} u_{w_0}^{-1} \rho(T_{w_0})$. The theorem now follows from Lemma 2.

Corollary 1 (Kilmoyer [8, Proposition 14(ii)]). $T_{w_0}^2$ is central in A.

For C a conjugacy class in R, define
\[e(\chi, C) = |C| \chi_0(s)/\dim V, \quad s \in S \cap C, \]
where $\chi_0(s) = \chi(T_s)_{u_s=1}$. Then $e(\chi, C)$ is a rational integer [5, 9.31]. Let $w_0 = s_1 s_2 \cdots s_N$, $s_i \in S$, be a reduced expression for w_0. Then $T_{w_0} = T_{s_1} \cdots T_{s_N}$. It is known that the number of s_i $(1 \leq i \leq N)$ in a given class $C \subseteq R$ is exactly $|C|$. Arguing as in [3], we see that the multiplicity of u_s as an eigenvalue of $\rho(T_s)$ is $(\chi_0(s) + \chi_0(1))/2$. Therefore
\[\det \rho(T_{w_0}^2) = \left(u_{w_0} \prod_C u_C^{e(\chi, C)} \right)^{\dim V}. \]

Thus $T_{w_0}^2$ acts on V as a scalar of the form $\lambda u_{w_0} \prod_C u_C^{e(\chi, C)}$, with λ a root of unity. This scalar must assume the value 1 when each indeterminate u_C is replaced by 1 since $w_0^2 = 1$, and therefore $\lambda = 1$. Hence we have $\rho(T_{w_0}^2) = u_{w_0} \prod_C u_C^{e(\chi, C)}$, a formula first observed by Springer (see [3]). This, together with the theorem, proves the following.

Corollary 2. $d_\chi/d_\chi = \prod_C u_C^{e(\chi, C)}$, the product taken over all conjugacy classes $C \subseteq R$.

4. An application. In this section we derive a recursion formula giving certain of the generic degrees for W in terms of those for the standard parabolic subgroups $W_J = \langle J \rangle$, $J \subseteq S$, $J \neq S$. A key ingredient in the formula is the ratio d_χ/d_χ, which may be found using the character table for W (Corollary 2).

Let A_J be the subalgebra of A spanned by the T_w for $w \in W_J$. We assume K is a splitting field for all A_J, $J \subseteq S$. If $\chi \in \Irr A$ and $\theta \in \Irr A_J$, let $m(\chi, \theta)$ be the multiplicity of θ in the restriction $\Res_{A_J}^A(\chi)$ of χ to A_J (or, equivalently, of θ_0 in $\Res_{W_J}^W(\chi_0)$). We have
\[\frac{P_J}{P_J} d_\theta = \sum_{\chi \in \Irr A} m(\chi, \theta) d_\chi, \]
where P_J is the Poincaré polynomial for (W_J, J). This is established by Surowski in [10] for the crystallographic cases. In general, (5) may be easily proved using
the fact that the generic degrees d_χ are the unique solution to the following linear system (see [1]).

$$\sum_\chi \chi(T_w)d_\chi = \begin{cases} P & \text{if } w = 1, \\ 0 & \text{if } w \neq 1. \end{cases}$$

We also have

$$(6) \sum_{J \subseteq S, \theta \in \text{Irr} \ A_j} (-1)^{|J|} m(\chi, \theta)m(\chi', \theta) = \delta_{\chi, \chi'}$$

for $\chi, \chi' \in \text{Irr} \ A$. This corresponds, on the level of W, to the fact that

$$\sum_{J \subseteq S} (-1)^{|J|} \text{Ind}^W_{W_j} \text{Res}_W^W(\chi_0) = \text{sign} \otimes \chi_0$$

for $\chi_0 \in \text{Irr} W$. Combining (5) and (6), we obtain

$$d_\chi = \sum_{J \subseteq S, \theta \in \text{Irr} \ A_j} (-1)^{|J|} \frac{P}{P_j} m(\chi, \theta)d_\theta.$$

Hence

$$(7) \left(\frac{d_\chi}{d_\chi} - (-1)^{|S|} \right) d_\chi = \sum_{J \neq S, \theta \in \text{Irr} \ A_j} (-1)^{|J|} \frac{P}{P_j} m(\chi, \theta)d_\theta.$$

If $|S|$ is odd or $d_\chi \neq d_\chi$, we may divide by $(d_\chi/d_\chi) - (-1)^{|S|}$ to solve (7) for d_χ. This is the desired (partial) recursion formula.

In practice, a slightly different technique has been used. Using (5) and transitivity of induction, the right-hand side of (7) may be replaced by a sum

$$\sum_{\theta \in \text{Irr} \ A_I} (-1)^{|I|} \frac{P}{P_I} n(\chi, \theta)d_\theta,$$

where I ranges over the maximal subsets of S. The coefficients $n(\chi, \theta)$ are certain integers, and are not unique. They may be found by solving the underdetermined linear system

$$\hat{x} - (-1)^{|S|} x = \sum_{\theta \in \text{Irr} \ A_K} (-1)^{|I|} n(\chi, \theta) \text{Ind}^A_{A_I}(\theta)$$

(see, for example, [2]).

REFERENCES

Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556