Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Integral representation of linear functionals on spaces of sections


Author: Anthony Karel Seda
Journal: Proc. Amer. Math. Soc. 91 (1984), 549-555
MSC: Primary 46G15; Secondary 46M20, 55R65
DOI: https://doi.org/10.1090/S0002-9939-1984-0746088-0
MathSciNet review: 746088
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An integral representation is given of functionals on the normed linear space of all sections, with compact support, of a Banach bundle $ p:E \to X$. This representation is shown to be equivalent in a certain sense to the strong lifting property on $ X$ and to the disintegration of measures property on spaces $ q:Y \to X$ over $ X$.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Intégration, I-V: Éléments de mathématique, Hermann, Paris, 1965 and 1967.
  • [2] N. Dinculeanu, Integration on locally compact spaces, Noordhoff, Leyden, 1974. MR 0360981 (50:13428)
  • [3] J. M. G. Fell, An extension of Mackey's method to Banach*-algebraic bundles, Mem. Amer. Math. Soc. No. 90 (1969). MR 0259619 (41:4255)
  • [4] -, Induced representations and Banach*-algebraic bundles, Lecture Notes in Math., Vol. 582, Springer-Verlag, Berlin and New York, 1977. MR 0457620 (56:15825)
  • [5] Gerhard Gierz, Bundles of topological vector spaces and their duality, Lecture Notes in Math., Vol. 955, Springer-Verlag, Berlin and New York, 1982. MR 674650 (84c:46076)
  • [6] A. and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 48, Springer-Verlag, Berlin and New York, 1969. MR 0276438 (43:2185)
  • [7] -, On the lifting property. III, Bull. Amer. Math. Soc. 70 (1964), 193-197. MR 0156935 (28:177)
  • [8] J. W. Kitchen and D. A. Robbins, Internal functionals and bundle duals, Trinity College and Duke University, Preprint, 1982, pp. 1-14. MR 780830 (86i:46077)
  • [9] -, Gelfand representation of Banach modules, Dissertationes Math. 203 (to appear). MR 687278 (85g:46060)
  • [10] A. L. Peressini, Ordered topological vector spaces, Harper and Row, New York and London, 1967. MR 0227731 (37:3315)
  • [11] A. K. Seda, Banach bundles of continuous functions and an integral representation theorem, Trans. Amer. Math. Soc. 270 (1982), 327-332. MR 642344 (83f:28009)
  • [12] -, On the categories $ {\operatorname{Sp(}}X)$ and $ {\operatorname{Ban(}}X)$, Cahiers Topologie Géom. Differentielle 24 (1983), 97-112. MR 702722 (84g:58009)
  • [13] -, Banach bundles and a theorem of J. M. G. Fell, Proc. Amer. Math. Soc. 83 (1981), 812-816. MR 630060 (84d:22006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G15, 46M20, 55R65

Retrieve articles in all journals with MSC: 46G15, 46M20, 55R65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0746088-0
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society