Invertibility in nest algebras
Authors:
Avraham Feintuch and Alan Lambert
Journal:
Proc. Amer. Math. Soc. 91 (1984), 573576
MSC:
Primary 47C05; Secondary 47A05
MathSciNet review:
746092
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let denote a complete nest of subspaces of a complex Hilbert space , and let denote the nest algebra defined by . Let denote the ideal of compact operators on . If has no infinitedimensional gaps then is invertible in if and only if it is invertible in . An example is given of a nest with an infinite gap for which there exists an operator in which is invertible in but not in .
 [1]
J.
A. Erdos, Operators of finite rank in nest algebras, J. London
Math. Soc. 43 (1968), 391–397. MR 0230156
(37 #5721)
 [2]
Thomas
Fall, William
Arveson, and Paul
Muhly, Perturbations of nest algebras, J. Operator Theory
1 (1979), no. 1, 137–150. MR 526295
(80f:47035)
 [3]
A.
Feintuch and R.
Saeks, Extended spaces and the resolution topology, Internat.
J. Control 33 (1981), no. 2, 347–354. MR 609087
(82b:47049), http://dx.doi.org/10.1080/00207178108922927
 [4]
, System theorya Hilbert space approach, Academic Press, New York, 1982.
 [5]
I.
C. Gohberg and M.
G. Kreĭn, Theory and applications of Volterra operators in
Hilbert space, Translated from the Russian by A. Feinstein.
Translations of Mathematical Monographs, Vol. 24, American Mathematical
Society, Providence, R.I., 1970. MR 0264447
(41 #9041)
 [6]
M.
S. Livshitz, On a certain class of linear operators in Hilbert
space, Rec. Math. [Mat. Sbornik] N.S. 19(61) (1946),
239–262 (Russian, with English summary). MR 0020719
(8,588d)
 [7]
J.
R. Ringrose, On some algebras of operators, Proc. London Math.
Soc. (3) 15 (1965), 61–83. MR 0171174
(30 #1405)
 [8]
A. Feintuch, Invertibility in nest algebras, preprint.
 [1]
 J. A. Erdös, Operators of finite rank in nest algebras, J. London Math. Soc. 43 (1968), 391397. MR 0230156 (37:5721)
 [2]
 T. Fall, W. Arveson and P. Muhly, Perturbations in nest algebras, J. Operator Theory 1 (1979), 137150. MR 526295 (80f:47035)
 [3]
 A. Feintuch and R. Saeks, Extended spaces and the resolution topology, Internat. J. Control 39 (1981), 347354. MR 609087 (82b:47049)
 [4]
 , System theorya Hilbert space approach, Academic Press, New York, 1982.
 [5]
 I. G. Gohberg and M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monos., vol. 24, Amer. Math. Soc., Providence, R.I., 1970. MR 0264447 (41:9041)
 [6]
 M. S. Lifshitz, On a certain class of linear operators in Hilbert space, Mat. Sb. 19 (1946), 239262. MR 0020719 (8:588d)
 [7]
 J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc. 3 (1965), 6183. MR 0171174 (30:1405)
 [8]
 A. Feintuch, Invertibility in nest algebras, preprint.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
47C05,
47A05
Retrieve articles in all journals
with MSC:
47C05,
47A05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198407460922
PII:
S 00029939(1984)07460922
Article copyright:
© Copyright 1984
American Mathematical Society
