Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Invertibility in nest algebras

Authors: Avraham Feintuch and Alan Lambert
Journal: Proc. Amer. Math. Soc. 91 (1984), 573-576
MSC: Primary 47C05; Secondary 47A05
MathSciNet review: 746092
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{F}$ denote a complete nest of subspaces of a complex Hilbert space $ \mathcal{H}$, and let $ \mathcal{C}$ denote the nest algebra defined by $ \mathcal{F}$. Let $ \mathcal{K}$ denote the ideal of compact operators on $ \mathcal{H}$. If $ \mathcal{F}$ has no infinite-dimensional gaps then $ T \in \mathcal{C}$ is invertible in $ \mathcal{C}$ if and only if it is invertible in $ \mathcal{C} + \mathcal{K}$. An example is given of a nest with an infinite gap for which there exists an operator in $ \mathcal{C}$ which is invertible in $ \mathcal{C} + \mathcal{K}$ but not in $ \mathcal{C}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47C05, 47A05

Retrieve articles in all journals with MSC: 47C05, 47A05

Additional Information

PII: S 0002-9939(1984)0746092-2
Article copyright: © Copyright 1984 American Mathematical Society