MULTI-DIMENSIONAL ANALYTIC STRUCTURE
AND SHILOV BOUNDARIES

DONNA KUMAGAI

Abstract. We give a condition under which multi-dimensional analytic structure can be introduced into the maximal ideal space of a uniform algebra.

Introduction. Let \(A \) be a uniform algebra on a compact Hausdorff space \(X \) and \(M \) the maximal ideal space of \(A \). Various authors have showed that one-dimensional or multi-dimensional analytic structure can be introduced into \(M \) provided that there exists a suitable subset \(G \) of \(\mathbb{C} \), or \(\mathbb{C}' \) respectively, with “the finite fibre property”. Thus, the classic theorem on the subject by E. Bishop [5] states

Theorem 1. For \(f \in A \), define \(f^{-1}(\lambda) = \{ x \in M : f(x) = \lambda \} \). Let \(W \) be a component of \(C \setminus f(X) \). Suppose that there exists a subset \(G \) of \(W \) such that:

1. \(G \) has positive two-dimensional Lebesgue measure.
2. For each \(\lambda \in G \), the cardinality of \(\{ f^{-1}(\lambda) \} \), is finite.

Then, there is an integer \(n \) such that for every \(\lambda \in W \), \(\# f^{-1}(\lambda) \leq n \). Furthermore, \(f^{-1}(W) \) can be given the structure of a one-dimensional complex analytic space such that each \(g \in A \) is holomorphic on this space.

B. Aupetit and J. Wermer [1] showed that the hypothesis on \(G \) of “positive measure” can be replaced by “positive exterior logarithmic capacity”, and no weaker condition will suffice.

Also generalizing Bishop’s result, R. Basener [3] and N. Sibony [9] independently formulated a condition for the existence of an \(n \)-dimensional analytic structure as follows: Let \(A' = \{ (f_1, \ldots, f_n) | f_1, \ldots, f_n \in A \} \), so that each \(F \in A' \) maps \(M \) to \(\mathbb{C}' \). Let \(V(F) = \{ x \in M : F(x) = (0, \ldots, 0) \} \). The \(n \)th Shilov boundary \(\partial_n A \) is defined by \(\partial_n A = \text{closure} \left[\bigcup_{F \in A'} \partial_0 A_{V(F)} \right] \), \(\partial_0 A \) is the usual Shilov boundary.

Theorem 2. Fix \(F \in A' \). Let \(W \) be a component of \(F(M) \setminus F(\partial_{n-1} A) \). Suppose there exists \(G \subseteq W \) such that:

1. \(M_{2n}(G) > 0 \) (\(M_{2n} \) is the Lebesgue measure in \(\mathbb{C}' \)).
2. For each \(\lambda \in G \), \(\# F^{-1}(\lambda) \) is finite.
Then, there exists a positive integer k such that for all \(\lambda \in W \), \(\#F^{-1}(\lambda) \) is at most k. Moreover, \(S = (F^{-1}(W), F, W) \) is a branched analytic cover; consequently \(F^{-1}(W) \) is an analytic space and for every \(f \in A, f \) is holomorphic on \(F^{-1}(W) \).

When \(n = 1 \), this is Bishop’s theorem.

Recently B. Aupetit [2] improved Theorem 2 by replacing (1) with the condition that \(G \) is not pluri-polar. (\(G \) is not pluri-polar if there is no plurisubharmonic function \(\phi \) on \(C^n \) such that \(G \subset \{ \lambda \in C^n | \phi(\lambda) = -\infty \}.\)

Aupetit’s proof of the above requires that \(G \) is contained in \(F(M) \setminus F(\partial_{n-1}A) \). By the definition of the \(n \)th Shilov boundary, we have \(\partial_0 A \subseteq \partial_0 A_1 \subseteq \cdots \subseteq M \). Since a component of \(F(M) \setminus F(\partial_{n-1}A) \) is open in \(C^n \) [3, Lemma 2], it is contained in the interior of \(F(M) \setminus F(\partial_0 A) \). In this paper we formulate a condition for an \(n \)-dimensional analytic structure assuming that \(G \) is a non-pluri-polar set contained in the interior of \(F(M) \setminus F(\partial_0 A) \). The hypothesis of “non-pluri-polar set” on \(G \) is then replaced by a more general “uniqueness set”. (Let \(\Omega \) be a region in \(C^n \). \(G \subseteq \overline{\Omega} \) is a uniqueness set (for \(\Omega \)) if every plurisubharmonic function on \(\Omega \) that converges to \(-\infty\) at every point of \(G \) is identically equal to \(-\infty\) on \(\Omega \).)

Our main results are stated in Theorems 3 and 4. We make essential use of the plurisubharmonicity proof for a certain class of functions associated with a uniform algebra, which the author developed in [7] and extended in [8]. We give an example covered by Theorem 4 of this paper but not by the Basener-Sibony-Aupetit Theorem.

Example. Let \(\Delta^2 \) be the open unit bidisc in \(C^2 \) and \(A = A(\Delta^2) \). Then \(\partial_0 A = \{(z, w) \in \Delta^2: |z| = 1, |w| = 1\}; \partial_1 A = \{(z, w) \in \Delta^2: |z| = 1 \text{ or } |w| = 1\}; \) and \(\partial_2 A = \Delta^2 = M \). The set \(G = \{(z, w): |z| < 1, |w| = 1\} \) is a uniqueness set for \(\Delta^2 \) and its 4-dimensional Lebesgue measure is zero. If we take \(F \) to be the map \((z, w)\) then \(G \) is contained in \(F(M) \setminus F(\partial_0 A) \) but not in \(F(M) \setminus F(\partial_{n-1} A) \).

Theorem 4 can be readily extended to the case where \(\# F^{-1}(\lambda) \) is assumed to be countable on \(G \) in view of Basener’s Theorem [4].

We introduce some definitions and notations. Fix \(F \in A^n \) and denote by \(\mathcal{M} \) the subset of the Cartesian product of \(n \)-copies of \(M \) consisting of the points \(m = (m_1, \ldots, m_n) \) such that \(F(m_1) = \cdots = F(m_n) \). Define the projection \(\pi \) on \(\mathcal{M} \) by \(\pi(m) = F(m_1) \). Let \(\mathcal{A} \) be the uniform algebra on \(\mathcal{M} \) generated by the functions of the form \(\theta \to g_1(\theta_1) \cdots g_n(\theta_n), g_i \in A, i = 1, 2, \ldots, n \). The maximal ideal space of \(\mathcal{A} \) is \(\mathcal{M} \).

Lemma 1. Let \(\Omega \) be a component of the interior of \(F(M) \setminus F(\partial_0 A) \) in \(C^n \). For each \(\tau \in \mathcal{A} \), the function \(\phi \), defined by

\[
\phi(\lambda) = \log \left\{ \max_{\theta \in \pi^{-1}(\lambda)} |\tau(\theta)| \right\},
\]

is plurisubharmonic in \(\Omega \).

Proof. The upper semicontinuity of \(\phi \) is proved by a standard method (see [11, p. 139]). We must show that if \(L \) is a complex line contained in \(\Omega \) the restriction of \(\phi \) to \(L \) is subharmonic. Let \(D \) be a disc contained in \(L \). For some \(\alpha_{jk} \) and \(\gamma_k \) in \(C \),

\[
L = \bigcap_{k=1}^{n-1} \left(\lambda_1, \ldots, \lambda_n \right) \in \Omega \left\{ \sum_{j=1}^{n} \alpha_{jk} \lambda_j = \gamma_k \right\}.
\]
Put

\[V = \left\{ m \in M \mid \sum_{j=1}^{n} \alpha_{jk} f_j(m) = \gamma_k, k = 1, \ldots, n - 1 \right\}. \]

By \(\mathcal{A}_V \) we mean the restriction algebra, \(\mathcal{A}_V = \{ f \in C(V) | f \) is the uniform limit of functions in \(\mathcal{A} \} \). The maximal ideal space of \(\mathcal{A}_V \) is \(V \). Choose a polynomial \(P \) with \(\phi \leq \text{Re} P \) on \(bD \). Then, for each \(\xi \) in \(bD \), \(\max_{\pi^{-1}(\xi)} |\tau| \cdot |e^{-P(\xi)}| \leq 1 \). We must show that \(\phi \leq \text{Re} P \) on \(\overline{D} \).

Fix \(z \in D \). There exists \(\theta \in \pi^{-1}(z) \) such that \(|\tau(\theta)| = \max_{\pi^{-1}(z)} |\tau| \). The function \(\theta \to \tau(\theta) \cdot e^{-P(f_1(\theta_1), \ldots, f_n(\theta_n))} \), restricted to \(V \), is in \(\mathcal{A}_V \). We shall show in Lemma 2 that \(\pi^{-1}(D) \subseteq V \setminus \partial_0[\mathcal{A}_V] \). Assuming that Lemma 2 is true, by the local maximum modulus principle of \(\mathcal{A}_V \) applied to \(\pi^{-1}(D) \),

\[|\tau(\theta)| \cdot |e^{-P(f_1(\theta_1), \ldots, f_n(\theta_n))}| \leq |\tau(\alpha)| \cdot |e^{-P(f_1(\alpha_1), \ldots, f_n(\alpha_n))}| \]

for some \(\alpha = (\alpha_1, \ldots, \alpha_n) \in b[\pi^{-1}(D)] \subseteq \pi^{-1}(bD) \). Hence

\[|\tau(\theta)| \cdot |e^{-P(f_1(\theta_1), \ldots, f_n(\theta_n))}| \leq 1. \]

Thus, for an arbitrary \(z \in \overline{D} \),

\[\phi(z) = \log \max \{ |\tau(\theta)| : \theta \in \pi^{-1}(z) \} \leq \text{Re} P(z). \]

This proves Lemma 1 assuming that \(\pi^{-1}(D) \subseteq V \setminus \partial_0[\mathcal{A}_V] \), which is to be proven. Next we deduce an important consequence of Lemma 1.

Corollary 1.1. Fix \(g \in A, F \in A^n \). For each \(k \in \mathbb{N} \),

\[\psi_{k,g}(\lambda) = \log \max \left\{ \prod_{1 \leq i, j \leq k} |g(\theta_i) - g(\theta_j)| : \theta_i, \theta_j \in F^{-1}(\lambda) \right\} \]

is plurisubharmonic on \(\Omega \).

Proof. \(\prod_{1 \leq i, j \leq k} (g(\theta_i) - g(\theta_j)) \in \mathcal{A} \). If \(\theta_1, \ldots, \theta_k \in F^{-1}(\lambda) \), then \((\theta_1, \ldots, \theta_k) \in \pi^{-1}(\lambda) \). The plurisubharmonicity of \(\psi_{k,g} \) follows from Lemma 1.

Theorem 3. Fix \(g \in A \) and \(F \in A^n \). Let \(\Omega \) be a component in the interior of \(F(M) \setminus F(\partial_0 A) \) in \(\mathbb{C}^n \). Suppose that there exists a subset \(G \) of \(\Omega \) with the following properties:

(i) \(G \) is not pluri-polar.

(ii) For every \(\lambda \in G \), \(\# \{ g \circ F^{-1}(\lambda) \} \) is finite.

Then, there exists \(k \in \mathbb{N} \) such that for each \(\lambda \in \Omega \), \(\# \{ g \circ F^{-1}(\lambda) \} \) is at most \(k \).

Proof. The condition (ii) implies that \(G = \bigcup_{i \in \mathbb{N}} G_i \), where \(G_i = \{ \lambda \in G | g \) assumes \(i \) values on \(F^{-1}(\lambda) \} \). For some \(k \in \mathbb{N} \), \(G_k \) is non-pluri-polar. Since for each \(\lambda \in G_k \), \(g \) assume \(k \) values on \(F^{-1}(\lambda) \),

\[\max_{\theta_i, \theta_j \in F^{-1}(\lambda)} \prod_{1 \leq i, j \leq k+1} |g(\theta_i) - g(\theta_j)| = 0 \]

on \(G_k \). Hence, \(\psi_{k+1,g} \equiv -\infty \) on \(\Omega \). This implies that \(g \) assumes at most \(k \) values on \(F^{-1}(\lambda) \) for each \(\lambda \in \Omega \). Take \(k \) to be the largest integer such that \(\Omega_k \cap \Omega \neq \emptyset \). Thus, \(\Omega = \bigcup_{i=1}^{k} \Omega_i \).
We shall now prove the hypothesis used in Lemma 1.

Lemma 2. Use notations as in Lemma 1.

\[\pi^{-1}(D) \subseteq V \setminus \partial_0 [\mathcal{U}_V]. \]

Proof. Let \(s \in \pi^{-1}(D). \) Then \(\pi(s) = F(s_1) = (f_1(s_1), \ldots, f_n(s_1)) \in D \subseteq L. \) Therefore, \(s \in V. \) We need to show \(s \not\in \partial_0 [\mathcal{U}_V]. \) Put \(a = \pi(s). \) Let \(U \) be an open disc contained in \(L \) and centered at \(a. \) Let \(bU \) be the boundary of \(U \) in the topology of \(L. \) For each function \(H \) in \(\mathcal{U}_V \) we shall construct a bounded analytic function \(\gamma \) on \(U \) satisfying \(H(s) = \gamma(a) \) and \(|\gamma(a)| \leq \max_{\pi^{-1}(bU)} |H|. \) We may assume without loss of generality that \(H \) takes the form,

\[(1) \quad H(\theta_1, \ldots, \theta_n) = \sum_{i=1}^{l} \prod_{j=1}^{n} h_{ij}(\theta_j); \quad (\theta_1, \ldots, \theta_n) \in V, l \in N, h_{ij} \in A. \]

Let \(U_j \) be the projection of \(U \) on the \(j \)th coordinate axis. \(F^{-1}(\overline{U}) = \bigcap_{j=1}^{l} \{ f_j^{-1}(\overline{U}_j) \} \) and it is \(\mathcal{A} \)-convex. Moreover, \(F^{-1}(\overline{U}) \cap \partial_0 A = \emptyset. \) Let \(\tilde{f}_j \) be the restriction of \(f_j \) to \(F^{-1}(\overline{U}). \) By the local maximum modulus principle applied to \(A \) with respect to \(F^{-1}(\overline{U}), \partial_0 AF^{-1}(\overline{U}) \subseteq \tilde{f}_i^{-1}(bU). \) Let \(\mu_j \) be a representing measure for \(s_j \) concentrated on \(\partial_0 AF^{-1}(\overline{U}). \) For each \(h_{ij} \) in (1), define

\[\eta_{ij}(z) = \int_{\tilde{f}_j^{-1}(bU_j)} \frac{f_j - a_j}{f_j - z} h_{ij} d\mu_j. \]

Assertion. \(\eta_{ij} \) has the following properties:

(i) \(\eta_{ij} \) is bounded and analytic on \(U_j. \)
(ii) If \(\xi_j \in bU_j \) and a nontangential limit \(\eta_{ij}(\xi_j) = \lim_{z \to \xi_j} \eta_{ij}(z) \) exists, then

\[|\eta_{ij}(\xi_j)| \leq \max_{f_j^{-1}(\xi)} |h_{ij}|. \]

(iii) \(\eta_{ij}(a_j) = h_{ij}(s_j). \)

The proof for the assertion is the same as that used by Seničkin in [10, Lemma 7].

Using the functions, \(\eta_{ij} \) defined above, form a bounded analytic function \(\gamma \) on \(U \) as

\[\gamma(z_1, \ldots, z_n) = \sum_{i=1}^{l} \prod_{j=1}^{n} \eta_{ij}(z_j). \]

Choose \(\xi_j \in bU_j \) so that all the nontangential limits \(\eta_{ij}(\xi_j) = \lim_{z \to \xi_j} \eta_{ij}(z), z \in U_j, \)

\(1 \leq i \leq l, \) exist, and \((\xi_1, \ldots, \xi_n) \in bU. \) Put

\[\gamma(\xi_1, \ldots, \xi_n) = \lim_{(z_1, \ldots, z_n) \to (\xi_1, \ldots, \xi_n)} \gamma(z_1, \ldots, z_n). \]

Using essentially the same proof as in [8, Lemma 2] we obtain

\[|\gamma(\xi_1, \ldots, \xi_n)| \leq \max_{\pi^{-1}(bU)} |H|. \]

This is true for almost all points in \(bU \) and \(\gamma \) is analytic. So,

\[|\gamma(a_1, \ldots, a_n)| \leq \max_{\pi^{-1}(bU)} |H|. \]
Hence

\[|H(s)| \leq \max_{\pi^{-1}(bU)} |H|. \]

Since \(s \) and \(H \) were chosen arbitrarily and \(\partial_0[\mathbb{A}_\nu] \) is the closure of the generalized peak points of \(\mathbb{A}_\nu \), this yields the desired conclusion

\[\partial_0[\mathbb{A}_\nu] \cap \pi^{-1}(D) = \emptyset. \]

Theorem 3 can be extended, using the same proof, as follows.

Definition. Let \(\Omega \) be a region on \(\mathbb{C}^n \). We say \(G \subseteq \Omega \) is a set of uniqueness for \(\Omega \) if every plurisubharmonic function defined on \(\Omega \) that converges to \(-\infty\) at every point of \(G \) is identically equal to \(-\infty\) on \(\Omega \).

Corollary 3.1. Let \(\Omega \) be a component of the interior of \(F(M) \setminus F(\partial_0 A) \) and \(\overline{\Omega} \) its closure in \(F(M) \setminus F(\partial_0 A) \). Suppose there exists a subset \(G \subseteq \overline{\Omega} \) satisfying

(i) \(G \) is a set of uniqueness for \(\Omega \).

(ii) For every \(\lambda \in G \), \(\# \{ g \circ F^{-1}(\lambda) \} \) is finite.

Then, there exists \(k \in \mathbb{N} \) such that for each \(\lambda \) in \(\Omega \), \(\# \{ g \circ F^{-1}(\lambda) \} \) is at most \(k \).

The following lemma is a special case of Theorem 4.

Lemma 3. Let \(A, M, \) and \(F \) be as before. Suppose that \(W \) is a component of \(F(M) \setminus F(\partial_{n-1} A) \), and suppose \(g \in A \) is constant on \(F^{-1}(\lambda) \) for every \(\lambda \in W \). Then, \(g \circ F^{-1} \) is analytic on \(W \).

Proof. We show \(g \circ F^{-1} \) is analytic in each variable. Let \(a \in W \) and \(\Delta''(a, r) \) be an open polydisc about \(a \); \(\Delta''(a, r) = \prod_{i=1}^n \Delta_i \), \(\Delta_i = \Delta(a_i, r_i) \). Put \(\Delta_i' = \{(a_1, \ldots, z_i, \ldots, a_n) | z_i \in \Delta_i \} \). Note that \(F^{-1}(\Delta_i') = f^{-1}_i(\Delta_i) \cap \Gamma \), where \(\Gamma \) is the set of zeros of \(n - 1 \) functions in \(A \). For simplicity of notation denote by \(f \) the restriction of \(f_i \) to \(\Gamma \). Thus \(F^{-1}(\Delta_i') = f^{-1}_i(\Delta_i) \), and we shall show that \(g \circ f^{-1} \) is analytic on \(\Delta_i' \).

Consider the algebra \(A_\Gamma \). By the definition of \(\partial_{n-1} A \), we have \(\partial_0 A_\Gamma \subseteq \partial_{n-1} A \), and \(\Delta_i \cap f(\partial_0 A_\Gamma) = \emptyset \) since \(\Delta(a, r) \cap F(\partial_{n-1} A) = \emptyset \). Note that \(\partial_0 A_{f^{-1}(\Delta_i)} \subseteq f^{-1}(b\Delta_i) \), by the local maximum modulus principle of \(A_\Gamma \) applied to \(f^{-1}(\Delta_i) \).

Let \(\mu_i \) be the representing measure for some \(m_i \in f^{-1}(a_i) \) supported on \(\partial_0 A_{f^{-1}(\Delta_i)} \), and \(\nu_i \) the projection of \(\mu_i \) on \(b\Delta_i \), which is the normalized Lebesgue measure on \(b\Delta_i \).

\[
\int_{b\Delta_i} g \circ f^{-1} \, d\nu_i = \int_{f^{-1}(b\Delta_i)} gd\mu_i = g(m_i) = g \circ f^{-1}(a_i).
\]

Thus, \(g \circ f^{-1} \) is a complex harmonic function.

\[
\int_{b\Delta_i} (z-a_i)^n \cdot g \circ f^{-1} \, d\nu_i = \int_{f^{-1}(b\Delta_i)} (f-a_i)^n \cdot gd\mu_i = 0 \quad (n \in \mathbb{N}).
\]

This shows that \(g \circ f^{-1} \) is holomorphic on \(\Delta_i \), and hence, \(g \circ F^{-1} \) on \(\Delta_i' \).

Theorem 4. Fix \(F \in A^n \) and \(g \in A \). Let \(\Omega \) be a component contained in the interior of \(F(M) \setminus F(\partial_0 A) \), and \(\overline{\Omega} \) its closure in \(F(M) \setminus F(\partial_0 A) \). Suppose there exists a subset \(G \subseteq \overline{\Omega} \) such that:

(i) \(G \) is a set of uniqueness for \(\Omega \).
(ii) For every $\lambda \in G$, $\# \{ g \circ F^{-1}(\lambda) \}$ is finite.

Let W be an open connected subset of Ω such that $W \cap F(\partial_{n-1} A) = \emptyset$. Then, there exists $k \in N$ such that the mapping $F: F^{-1}(W) \to W$ is a k-sheeted analytic covering, so that every $f \in A$ is holomorphic on $F^{-1}(W)$.

Proof of Theorem 4. By Corollary 3.1 there is a $k \in N$ such that $W = \bigcup_{i=1}^{k} W_i$, where $W_i = \{ \lambda \in W \mid g \text{ assumes i values on } F^{-1}(\lambda) \}$. Without loss of generality assume $W_i \neq \emptyset$. We shall show $g \circ F^{-1}$ is analytic in W_k. Let $\lambda \in W_k$ and b_1, \ldots, b_k be the distinct values of g on $F^{-1}(\lambda)$. Let $D_i \subset C (1 \leq i \leq k)$ be a disc centered at b_i. Assume $D_i \cap D_j = \emptyset$ for $i \neq j$.

Assertion 1. There exists a neighborhood \mathcal{N} of λ such that $g(F^{-1}(\mathcal{N})) \subset \bigcup_{i=1}^{k} D_i$ and $\overline{\mathcal{N}} \subset W$. This follows from continuity of g and the topology of M.

Assertion 2. Let $e_i = F^{-1}(\mathcal{N}) \cap g^{-1}(\overline{D_i})$. Then, $F(e_i) = \overline{\mathcal{N}}$.

Proof. Denote $F|_{e_i} = F_i$. Apply Lemma 1 of [3] to $A F^{-1}(\overline{\mathcal{N}})$ and e_i to obtain $\partial_{n-1} A_i e_i \subset F_i^{-1}(b \overline{\mathcal{N}})$. Recall that $\lambda \in C^n \setminus F(\partial_{n-1} A_i)$. If J is a component with $\lambda \in J \subset C^n \setminus F(\partial_{n-1} A_i)$, by Lemma 2 of [3], $F(e_i) \cap J = J$. J contains \mathcal{N} and $F(e_i)$ is closed. So, $\mathcal{N} \subset \overline{\mathcal{N}} \subset F(e_i)$. We have $F(e_i) \subset \overline{\mathcal{N}}$ by the definition of e_i.

Since g assumes at most k-values on every fiber, it is clear that g is constant on the set $F^{-1}(\lambda) \cap e_i (\lambda \in \overline{\mathcal{N}}, 1 \leq i \leq k)$. In view of Lemma 3, $\lambda \mapsto g \circ F^{-1}(\lambda)$ is analytic on N. We have shown that $F^{-1}(W_k) \to W_k$ is a k-sheeted covering map, and also that W_k is open.

Next, using Assertion 2 above and the ideas of Bishop and Basener [3, p. 103], we can show that $W \setminus W_k$ is a negligible set in W and $F^{-1}(W_k)$ is dense in $F^{-1}(W)$.

Consequently, we conclude that $(F^{-1}(W), F, W)$ is a k-sheeted analytic cover in the sense of [6, p. 101]. This proves Theorem 4.

Bibliography

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

Current address: Pennsylvania State University, Berks Campus, Reading, Pennsylvania 19608