Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On cohomology automorphisms of complex flag manifolds

Authors: Michael Hoffman and William Homer
Journal: Proc. Amer. Math. Soc. 91 (1984), 643-648
MSC: Primary 57T15; Secondary 55S37
MathSciNet review: 746106
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We conjecture a classification of the automorphisms of the rational cohomology ring of $ U\left( n \right)/H$ for $ H$ a closed connected subgroup of maximal rank in $ U\left( n \right)$, and prove a partial result.

References [Enhancements On Off] (What's this?)

  • [1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogénes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207. MR 0051508 (14:490e)
  • [2] S. Brewster and W. Homer, Rational automorphisms of Grassmann manifolds, Proc. Amer. Math. Soc. 88 (1983), 181-183. MR 691305 (85b:55033)
  • [3] S. A. Broughton, M. Hoffman and W. Homer, The height of two-dimensional cohomology classes of complex flag manifolds, Canad. Math. Bull. 26 (1983), 498-502. MR 716592 (85f:57027)
  • [4] H. Glover and W. Homer, Self maps of flag manifolds, Trans. Amer. Math. Soc. 267 (1980), 423-434. MR 626481 (83b:55009)
  • [5] H. Glover and G. Mislin, On the genus of generalized flag manifolds, Enseignment Math. 27 (1981), 211-219. MR 659149 (83h:55019)
  • [6] M. Hoffman, Endomorphisms of the cohomology of complex Grassmannians, Trans. Amer. Math. Soc. 281 (1984), 745-760. MR 722772 (85f:57028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57T15, 55S37

Retrieve articles in all journals with MSC: 57T15, 55S37

Additional Information

Keywords: Flag manifold, cohomology ring, automorphism
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society