C_p-PERTURBATIONS OF NEST ALGEBRAS

GARETH J. KNOWLES

ABSTRACT. Given the ideal C_p and a nest algebra A in \(\mathcal{L}(H) \) there are two corresponding subalgebras of \(\mathcal{L}(H) \). The first consists of all C_p-perturbations of A. The second, a natural generalization of the quasitriangular algebra corresponding to A, consists of all T in \(\mathcal{L}(H) \) with \(E \to (I - E)TE \) continuous from \(\text{Lat} A \) into \(C_p \). Necessary and sufficient conditions are given for these algebras to be identical.

1. Introduction. The notion of a quasitriangular algebra corresponding to some arbitrary nest of projections was first introduced in [3]. In [3], a particularly useful characterization of a quasitriangular algebra as the collection of all compact perturbations of the corresponding nest algebra, is given. From this characterization many useful developments followed [1, 3]. This paper is concerned with studying a class of algebras, the quasitriangular p-classes, that are a natural generalization of a quasitriangular algebra. The main result contained here is that the Arveson characterization fails for \(1 \leq p < \infty \). Necessary and sufficient conditions are given for the characterization to hold. This research was undertaken while in receipt of a Science Research Council award during the preparation of the authors Ph.D. under the supervision of J. Erdos.

A totally ordered collection of subspaces of some Hilbert space H closed under the taking of suprema and infima is termed a (complete) nest. Given such a nest \(\mathcal{N} \) of subspaces there is a corresponding totally ordered set of projections on the subspaces on \(\mathcal{N} \) which will be denoted by \(\mathcal{E} \). Following [3], the quasitriangular algebra corresponding to such a nest \(\mathcal{N} \) consists of all \(T \in \mathcal{L}(H) \) (the collection of all bounded linear operators acting on H) with the property that \(E \to (I - E)TE \) is a continuous map from \(\mathcal{E} \), with the strong operator topology, to \(C_\infty \), the ideal of all compact operators with the norm topology. The algebra \(\text{Alg} \mathcal{N} \) of all operators acting on \(H \) leaving each subspace in \(\mathcal{N} \) invariant will be denoted by \(A \).

DEFINITION. An operator T in \(\mathcal{L}(H) \) is said to be in the quasitriangular p-class corresponding to \(\mathcal{N} \), denoted by \(T_p (= T_p(\mathcal{N})) \) whenever

(i) \((I - E)TE \) is in \(C_p \) for each \(E \) in \(\mathcal{E} \) and

(ii) \(E \to (I - E)TE \) is continuous from \(\mathcal{E} \), with the strong operator topology to \(C_p \), with the p-norm.

The proof of the following is based on that of [3] for \(C_\infty \).

LEMMA 1. The algebra \(A + C_p \) is a subalgebra of \(T_p \).

PROOF. Certainly if \(T = A + K \) for some \(A \in A \) and \(K \in C_p \), then \((I - E)TE \) is in \(C_p \). Suppose that \(0 \neq K = x \otimes y \) for some \(x, y \) in \(H \). Then

\[
(I - E)KE - (I - F)KF = -Ex \otimes (E - F)y + (E - F)x \otimes (I - F)y.
\]

Received by the editors March 8, 1982 and, in revised form, September 12, 1983. 1980 Mathematics Subject Classification. Primary 47A55.
Thus
\[||(I - E)KE - (I - F)KF||_p \leq ||(E - F)y|| \cdot ||x|| + ||(E - F)x|| \cdot ||y|| \]
from which (ii) now follows: Let \(R \) be a finite rank operator. Then by linearity it follows that (ii) holds for \(K = R \). Choose \(R_n \) finite rank with \(||K - R_n||_p \to 0 \). For each \(E \in \mathcal{E} \),
\[||(I - E)KE||_p \leq ||(I - E)(K - R_n)E||_p + ||(I - E)R_nE||_p. \]
Since \(||(I - E)(K - R_n)E||_p \to 0 \) as \(n \to \infty \) it follows that the map \(E \to (I - E)KE \) is the uniform limit of continuous functions, and hence continuous.

Corollary 2. When \(\mathcal{N} \) is a finite nest, then \(\mathcal{A} + \mathcal{C}_p \supseteq \mathcal{T}_p \).

Proof. By Lemma 1 it will be sufficient to show \(\mathcal{A} + \mathcal{C}_p \supseteq \mathcal{T}_p \). Let \(\mathcal{N} \) be the nest \(0 = E_0 < E_1 < \cdots < E_m = I \). For any \(T \in \mathcal{T}_p \)
\[T = \sum_{n=1}^{m} (I - E_n)T(E_n - E_{n-1}) + \sum_{n=1}^{m} (E_n - E_{n-1})T(I - E_{n-1}), \]
where the first summand is in \(\mathcal{C}_p \) and the second in \(\mathcal{A} \).

Theorem 3. If \(\mathcal{N} \) is an infinite nest then \(\mathcal{A} + \mathcal{C}_p \) is strictly contained in \(\mathcal{T}_p \) for \(1 \leq p < \infty \).

Proof. Using the well-known fact that \(\mathcal{E} \) is compact in the strong operator topology, a sequence of distinct projections can be found with either \(E_n \not\in P \) or \(E_n \not\in sP \) for some \(P \) in \(\mathcal{E} \). Let us assume that \(E_n \not\in P \). For each \(n \in N \), choose \(x_n \) a unit vector in the range of \((E_n - E_{n-1}) \) and define the bounded operator \(K \) in \(\mathcal{L}(H) \) by
\[K = \sum_{i=1}^{\infty} i^{-1/2} x_i \otimes x_{i+1}. \]
The following will now be shown to hold true for this \(K \):

(i) \((I - E)KE \) is in \(\mathcal{C}_p \) for each \(E \) in \(\mathcal{E} \); \(1 \leq p \leq \infty \).

(ii) \(E \to (I - E)KE \) is continuous from \(\mathcal{E} \) with the strong operator topology to \(\mathcal{C}_1 \) with the trace-class norm.

(iii) \(K \notin \mathcal{A} + \mathcal{C}_2 \).

(i) Fix \(E \in \mathcal{E} \) with \(E < P \); then by assumption we can find an \(n \) with \(E < E_n < P \), giving \((I - E)KE = \sum_{i=1}^{n} i^{-1/2} E x_i \otimes (I - E)x_{i+1} \) is in \(\mathcal{C}_p \) for \(1 \leq p \leq \infty \).

(ii) Let \(E \in \mathcal{E} \) satisfy \(E < P \). It follows that, for some \(n \in N \), \(E_{n-1} < E \leq E_n \). Given \(\varepsilon > 0 \) choose \(F_1 \) as follows: when \(E \) has an immediate predecessor \(E_- \) let \(F_1 = E_- \); when \(E \) has no immediate predecessor choose \(F_1 \) in \(\mathcal{E} \) with \(E_{n-1} < F_1 < E \) and \(\| (E - F_1)x_j \| < \varepsilon/8 \) for \(j = 1, 2, \ldots, n + 1 \). For an \(F \) with \(F_1 < F \leq E \) it now follows that
\[(I - E)KE - (I - F)KF \]
\[= (n - 1)^{-1/2} (Ex_{n-1} \otimes (I - E)x_n - Fx_{n-1} \otimes (I - F)x_n) \]
\[+ n^{-1/2} (Ex_n \otimes (I - E)x_{n+1} - Fx_n \otimes (I - F)x_{n+1}) \]
\[= (n - 1)^{-1/2} [E x_{n-1} \otimes (E - F)x_n + (E - F)x_{n-1} \otimes (I - F)x_n] \]
\[+ n^{-1/2} [Ex_n \otimes (E - F)x_{n+1} + (E - F)x_n \otimes (I - F)x_{n+1}]. \]
Let T be the first term in the above expansion, that is

$$T = (n-1)^{-1/2}(-Ex_{n-1} \otimes (E-F)x_n).$$

Thus TT^* is a rank one operator with $\sigma((TT^*)^{1/2}) = (n-1)^{-1/2}\|Ex_{n-1}\|$. From this it now follows that $\|T\|_1 < \varepsilon/8$. Similar computations for the other three terms will now show that $\|(I-E)KE - (I-F)KF\|_1 < \varepsilon/2$ for $F_1 < F \leq E$.

Similarly, when $E_k \leq E < E_{k+1}$ for some k, given $\varepsilon > 0$, choose F_2 as follows: when E has an immediate successor E_+ let F_2 be E_+; when E has no immediate successor choose F_2 in \mathcal{E} with $E < F_2 < E_{k+1}$ satisfying

$$\|((F_2 - E)x_j\| < \varepsilon/8 \quad \text{for} \quad j = 1, 2, \ldots, k + 1.$$

An exactly similar argument to the one above will show that whenever G in \mathcal{E} satisfies $E \leq G < F_2$ then $\|(I-G)KG - (I-E)KE\|_1 < \varepsilon/2$. Thus, it is concluded that $\|(I-G)K\|_1 < \varepsilon/2$ for $G, F \in (F_1, F_2)$, showing continuity at $E < P$. Note that, for $E \geq E_n$, $\|(I-E)KE\|_1 \leq 2n^{-1/2}$ which implies continuity at P. A parallel argument deals with the case that there is a sequence of distinct projections $E_n \searrow sP$ in \mathcal{E}.

(iii) First note that $\|K\|^2 = \sum_{j=1}^{\infty} \|(E_{j+1} - E_j)K(E_j - E_{j-1})\|^2 = \sum_{j=1}^{\infty} j^{-1}$, showing K is not in C_2. Suppose \mathcal{F} is some arbitrary nest of projections acting on some Hilbert space H and X acting on H is in C_p $(1 < p < \infty)$. It is shown in [2, Theorem 3.2] that if X is rewritten as $X = \mathcal{L}(X) + \mathcal{D}(X) + \mathcal{Z}(X)$, then these define bounded operators, in fact they are also in C_p. Applying this to the above, it is first noted that $K = \mathcal{A}(K)$ and $\mathcal{A}(A) = 0$ for any A where we decompose K relative to \mathcal{E}. Suppose then that it were possible to write K in the form $A + C$ for some $A \in \mathcal{A}$ and $C \in \mathcal{C}_2$. Therefore,

$$K = \mathcal{A}(K) = \mathcal{A}(K - A) = \mathcal{A}(C)$$

which is in C_2, contradicting the above. This completes the argument in the case $p = 2$. It is easily seen that a simple adjustment of the eigenvalues in the definition of K will provide an analogous counterexample for a general p, $1 < p < \infty$.

The case for $p = 1$ now follows from that of $p = 2$. Suppose K, as above, were of the form $K = A + C$ for some A in Alg \mathcal{E} and C in \mathcal{C}_1. Decompose C in \mathcal{C}_2 as before. It will now follow that K is in C_2, a contradiction.

DEFINITION. For each $T \in \mathcal{A} + C_p$ $(\infty > p > 1)$ set

$$\|\|T\|_p = \|A + \mathcal{L}(C) + \mathcal{D}(C)\| + \sup_{E \in \mathcal{E}} \|(I-E)TE\|_p$$

where $T = A + C$ and C decomposes into $\mathcal{L}(C) + \mathcal{D}(C) + \mathcal{A}(C)$ with respect to \mathcal{E}.
Lemma 4. \(||| \cdot |||_p \) is a norm on \(\mathcal{A} + \mathcal{C}_p \).

Proof. It is obviously well defined, subadditive and satisfies \(||| \alpha T |||_p = |\alpha| \cdot ||| T |||_p \). Suppose then that \(||| T |||_p = 0 \). It follows from [1, Theorem 1.1] that \(T \) is in \(\mathcal{A} \). If \(T = A + C \) for some \(A \in \mathcal{A}, C \in \mathcal{C}_p \)

\[
T = A + C = A + \mathcal{L}(C) + \mathcal{D}(C),
\]

from which it follows that \(T = 0 \).

Remarks. It is not very hard to show that \(\mathcal{A} + \mathcal{C}_p \) is not complete in the \(||| \cdot |||_p \) norm. For example, take a sequence \(\{A_n\}_{n=1}^{\infty} \) where

\[
A_n = \sum_{j=1}^{n} b_j(x_j \otimes x_{j+1}) \quad \text{for some } \{b_n\} \in c_0 \setminus l_p.
\]

It would be of interest to know whether its completion in this norm is \(\overline{T_p} \).

References

Department of Mathematics, Texas Tech University, Lubbock, Texas 79409