Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A short proof of a decomposition theorem of a von Neumann algebra


Authors: M. Awami and A. B. Thaheem
Journal: Proc. Amer. Math. Soc. 92 (1984), 81-82
MSC: Primary 46L40; Secondary 46L10
DOI: https://doi.org/10.1090/S0002-9939-1984-0749896-5
MathSciNet review: 749896
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a von Neumann algebra and $ S$ and $ T$ be commuting $ ^*$-auto-morphisms on $ M$ satisfying the equation: $ S + {S^{ - 1}} = T + {T^{ - 1}}$. It is proved that $ M$ can be decomposed by a central projection $ p$ in $ M$ such that $ S = T$ on $ Mp$ and $ S = {T^{ - 1}}$ on $ M(1 - p)$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L40, 46L10

Retrieve articles in all journals with MSC: 46L40, 46L10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0749896-5
Keywords: Automorphisms, central projection
Article copyright: © Copyright 1984 American Mathematical Society