Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Mappings of the Sierpiński curve onto itself


Author: J. J. Charatonik
Journal: Proc. Amer. Math. Soc. 92 (1984), 125-132
MSC: Primary 54F15; Secondary 54F50
DOI: https://doi.org/10.1090/S0002-9939-1984-0749904-1
MathSciNet review: 749904
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given two points $ p$ and $ q$ of the Sierpiński universal plane curve $ S$, necessary and/or sufficient conditions are discussed in the paper under which there is a mapping $ f$ of $ S$ onto itself such that $ f(p) = q$ and $ f$ belongs to one of the following: homeomorphisms, local homeomorphisms, local homeomorphisms in the large sense, open, simple or monotone mappings.


References [Enhancements On Off] (What's this?)

  • [1] L. M. Blumenthal and K. Menger, Studies in geometry, Freeman, San Francisco, Calif., 1970. MR 0273492 (42:8370)
  • [2] K. Borsuk and R. Molski, On a class of continuous mappings, Fund. Math. 45 (1958), 84-98. MR 0102063 (21:858)
  • [3] B. Knaster and A. Lelek, Coutures et tapis, Fund. Math. 45 (1958), 186-199. MR 0102065 (21:860)
  • [4] J. Krasinkiewicz, On homeomorphisms of the Sierpiński curve, Comment. Math. Prace Mat. 12 (1969), 255-257. MR 0247618 (40:882)
  • [5] P. Krupski, Continua which are homogeneous with respect to continuity, Houston J. Math. 5 (1979), 345-356. MR 559975 (81h:54041)
  • [6] K. Kuratowski, Topology, Vol. II, Academic Press, New York; PWN, Warsaw, 1968. MR 0259835 (41:4467)
  • [7] A. Lelek, Sur l'unicohérence, les homéomorphies locales et les continus irréducibles, Fund. Math. 45 (1958), 51-63. MR 0099637 (20:6076)
  • [8] T. Maćkowiak, Local homeomorphisms onto tree-like continua, Colloq. Math. 38 (1977), 63-68. MR 0464200 (57:4135)
  • [9] S. Mazurkiewicz, Sur les continus homogènes, Fund. Math. 5 (1924), 137-146.
  • [10] G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324. MR 0099638 (20:6077)
  • [11] -, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R.I., 1963.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F15, 54F50

Retrieve articles in all journals with MSC: 54F15, 54F50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0749904-1
Keywords: Universal plane curve, rational part, local homeomorphism, open, simple, monotone mappings
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society