Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cyclic group actions on Riemann surfaces


Author: Mahgoub Yahia
Journal: Proc. Amer. Math. Soc. 92 (1984), 141-148
MSC: Primary 57S17; Secondary 57R85
DOI: https://doi.org/10.1090/S0002-9939-1984-0749906-5
MathSciNet review: 749906
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the actions of $ {\mathbf{Z}}/m$, the cyclic group of order $ m$, on Riemann surfaces which generate the bordism group $ \mathcal{U}_2^{{\mathbf{Z}}/m}$. We analyse $ \mathcal{U}_2^{{\mathbf{Z}}/m}$ by means of fixed point structure using the technique of "bordism with families of slice types" [4].


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah and G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2) 87 (1968), 485-530. MR 0236951 (38:5244)
  • [2] P. E. Conner and E. E. Floyd, Periodic maps which preserve a complex structure, Bull. Amer. Math. Soc. 70 (1964), 574-579. MR 0164356 (29:1653)
  • [3] -, Maps of odd period, Ann. of Math. (2) 84 (1966), 132-256. MR 0203738 (34:3587)
  • [4] C. Kosniowski, Actions of finite abelian groups, Pitman, New York, 1978. MR 518871 (80e:57047)
  • [5] -, Generators of $ {\mathbf{Z}}/p$ bordism ring, Math. Z. 149 (1976), 121-130. MR 0407863 (53:11633)
  • [6] I. Madsen and M. Rothenberg, On the classification of $ G$-spheres (preprint).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57S17, 57R85

Retrieve articles in all journals with MSC: 57S17, 57R85


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0749906-5
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society