Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Krull and global dimensions of fully bounded Noetherian rings


Authors: Kenneth A. Brown and R. B. Warfield
Journal: Proc. Amer. Math. Soc. 92 (1984), 169-174
MSC: Primary 16A33; Secondary 16A60
DOI: https://doi.org/10.1090/S0002-9939-1984-0754696-6
MathSciNet review: 754696
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of this paper states that the Krull dimension of a fully bounded Noetherian ring containing an uncountable central subfield is bounded above by its global dimension, provided that the latter is finite.


References [Enhancements On Off] (What's this?)

  • [1] S. M. Bhatwadekar, On the global dimension of some filtered algebras, J. London Math. Soc. (2) 13 (1976), 239-248. MR 0404398 (53:8200)
  • [2] K. A. Brown, Ore sets in Noetherian rings, Seminarie Malliavin (to appear). MR 873094 (88b:16006)
  • [3] K. A. Brown, C. R. Hajarnavis and A. E. MacEacharn, Noetherian rings of finite global dimension, Proc. London Math. Soc. (3) 44 (1982), 349-371. MR 647437 (84a:16025)
  • [4] K. A. Brown and C. R. Hajarnavis, Homologically homogeneous rings, Trans. Amer. Math. Soc. 281 (1984), 197-208. MR 719665 (85e:16046)
  • [5] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 0077480 (17:1040e)
  • [6] J. H. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1970), 75-79. MR 0258886 (41:3531)
  • [7] R. F. Damiano and Z. Papp, Stable rings with finite global dimension, Advances in Non-Commutative Ring Theory (Proc. Plattsburgh, 1981), Lecture Notes in Math., vol. 951, Springer-Verlag, Berlin, 1982, pp. 47-67. MR 672800 (84i:16001)
  • [8] K. L. Fields, On the global dimension of residue rings, Pacific J. Math. 32 (1970), 345-349. MR 0271166 (42:6049)
  • [9] K. R. Goodearl, Global dimension of differential operator rings. II, Trans. Amer. Math. Soc. 209 (1975), 65-85. MR 0382359 (52:3244)
  • [10] K. R. Goodearl and L. W. Small, Krull versus global dimension in noetherian P.I. rings, Proc. Amer. Math. Soc. 92 (1984), 175-178. MR 754697 (86d:16020)
  • [11] A. V. Jategaonkar, A counterexample in ring theory and homological algebra, J. Algebra 12 (1969), 418-440. MR 0240131 (39:1485)
  • [12] -, Jacobson's conjecture and modules over fully bounded Noetherian rings, J. Algebra 30 (1974), 103-121. MR 0352170 (50:4657)
  • [13] -, Localisation in Noetherian rings (to appear)
  • [14] T. H. Lenagan, Artinian ideals in Noetherian rings, Proc. Amer. Math. Soc. 51 (1975), 499-500. MR 0384862 (52:5732)
  • [15] B. J. Mueller, Localisation in fully bounded Noetherian rings, Pacific J. Math. 67 (1976), 233-245. MR 0427351 (55:385)
  • [16] -, Two-sided localisation in Noetherian $ PI$-rings, Ring Theory, Lecture Notes in Pure and Appl. Math., vol. 51, Marcel Dekker, New York, 1979, pp. 169-190.
  • [17] R. Resco, L. W. Small and J. T. Stafford, Krull and global dimensions of semiprime Noetherian $ PI$-rings, Trans. Amer. Math. Soc. 274 (1982), 285-295. MR 670932 (84g:16010)
  • [18] J. T. Stafford, On the ideals of a Noetherian ring, preprint. MR 779071 (86e:16023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A33, 16A60

Retrieve articles in all journals with MSC: 16A33, 16A60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0754696-6
Keywords: Noetherian rings, global dimension, Krull dimension, fully bounded rings, localization, cliques
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society