Linear maps between certain nonseparable -algebras

Author:
Tadasi Huruya

Journal:
Proc. Amer. Math. Soc. **92** (1984), 193-197

MSC:
Primary 46L05; Secondary 47B99

DOI:
https://doi.org/10.1090/S0002-9939-1984-0754701-7

MathSciNet review:
754701

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There exists a noninjective commutative -algebra such that every bounded linear map of any -algebra into is decomposed as a linear combination of positive linear maps.

**[1]**E. G. Effros and E. C. Lance,*Tensor products of operator algebras*, Adv. in Math.**25**(1977), 1-34. MR**0448092 (56:6402)****[2]**T. Huruya,*Decompositions of completely bounded maps*(preprint). MR**862192 (88b:46092)****[3]**T. Huruya and J. Tomiyama,*Completely bounded maps of**-algebras*, J. Operator Theory**10**(1983), 141-152. MR**715564 (85f:46108a)****[4]**H. E. Lacey,*The isometric theory of classical Banach spaces*, Springer-Verlag, Berlin, Heidelberg and New York, 1974. MR**0493279 (58:12308)****[5]**R. I. Loebl,*Contractive linear maps on**-algebras*, Michigan Math. J.**22**(1975), 361-366. MR**0397423 (53:1282)****[6]**V. I. Paulsen,*Completely bounded maps on**-algebras and invariant operator ranges*, Proc. Amer. Math. Soc.**86**(1982), 91-96. MR**663874 (83i:46064)****[7]**A. L. Peressini,*Ordered topological vector spaces*, Harper & Row, New York, 1967. MR**0227731 (37:3315)****[8]**R. R. Smith,*Completely bounded maps between**-algebras*, J. London Math. Soc. (2)**27**(1983), 157-166. MR**686514 (84g:46086)****[9]**M. Takesaki,*Theory of operator algebras*. I, Springer-Verlag, Berlin, Heidelberg and New York, 1979. MR**548728 (81e:46038)****[10]**J. Tomiyama,*Tensor products and projections of norm one in von Neumann algebras*, Lecture Notes (mimeographed), University of Copenhagen, 1970.**[11]**-,*Recent development of the theory of completely bounded maps between**-algebras*(preprint).**[12]**S.-K. J. Tsui,*Decompositions of linear maps*, Trans. Amer. Math. Soc.**230**(1977), 87-112. MR**0442702 (56:1083)****[13]**A. W. Wickstead,*Spaces of linear operators between partially ordered Banach spaces*, Proc. London Math. Soc. (3)**28**(1974), 141-158. MR**0333828 (48:12150)****[14]**G. Wittstock,*Ein operatorwertiger Hahn-Banach Satz*, J. Funct. Anal.**40**(1981), 127-150. MR**609438 (83d:46072)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L05,
47B99

Retrieve articles in all journals with MSC: 46L05, 47B99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1984-0754701-7

Keywords:
Completely bounded map,
completely positive map,
injective -algebra,
partially ordered Banach space,
stonean space

Article copyright:
© Copyright 1984
American Mathematical Society