A WAVE EQUATION
WITH A POSSIBLY JUMPING NONLINEARITY

J. R. WARD, JR.1

ABSTRACT. Existence of a doubly periodic solution to a forced semilinear wave equation is established. The nonlinearity may “jump” across any finite number of eigenvalues of finite multiplicity.

1. Introduction. Let \(J = [0, 2\pi] \times [0, 2\pi] \) and let \(f: J \times \mathbb{R} \to \mathbb{R}, (t, x, s) \mapsto f(t, x, s) \), be a function satisfying the Carathéodory conditions. Assume there is a number \(A > 0 \) and a function \(B \in L^2(J) \) such that for each \(s \in \mathbb{R} \) and \((t, x) \in J\) we have

\[
|f(t, x, s)| \leq A|s| + B(t, x).
\]

Let \(h \in L^2(J) \). We consider the existence (in the weak sense) of solutions \(2\pi \)-periodic in each of \(x \) and \(t \) for the semilinear wave equation

\[
utt - uxx - f(t, x, u) = h(t, x).
\]

By a weak solution to the doubly \(2\pi \)-periodic problem for (1.2) is meant a \(u \in L^2(J) \) such that

\[
\int_J u(t, x)[v_{tt}(t, x) - v_{xx}(t, x)] \, dt \, dx = \int_J [f(t, x, u(t, x)) + h(t, x)]v(t, x) \, dt \, dx
\]

for every \(v \in C^2(J) \) satisfying the boundary conditions

\[
\begin{align*}
v(t, 0) - v(t, 2\pi) &= v_x(t, 0) - v_x(t, 2\pi) = 0 & (t \in [0, 2\pi]), \\
v(0, x) - v(2\pi, x) &= v(t, 0) - v(t, 2\pi) = 0 & (x \in [0, 2\pi]).
\end{align*}
\]

If \(\lambda \in \mathbb{R} \) the doubly \(2\pi \)-periodic problem for

\[
utt - uxx - \lambda u = h(t, x)
\]

has a unique weak solution for every \(h \in L^2(J) \) if and only if \(\lambda \notin \Sigma \), where

\[
\Sigma = \{ n^2 - m^2 : (m, n) \in \mathbb{Z} \times \mathbb{Z} \} = \{ \ldots, \lambda_{-2}, \lambda_{-1}, \lambda_0 = 0, \lambda_1, \lambda_2, \ldots \}
\]

and \(\mathbb{Z} \) denotes the integers.

Received by the editors October 4, 1983.

1980 Mathematics Subject Classification. Primary 35B10, 35L05, 47H15.

Key words and phrases. Nonlinear wave equation, periodic solution.

1 This work was done while the author was visiting the Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

©1984 American Mathematical Society
0002-9939/84 $1.00 + $.25 per page
Existence results for (1.2) with any of the usual boundary conditions (e.g., doubly periodic, periodic-Dirichlet) usually require \(f \) to be monotone in \(s \). The monotonicity enables one to work around difficulties created by the infinite multiplicity of the eigenvalue \(\lambda_0 = 0 \).

It is known that, with our boundary conditions, (1.2) has a solution for each \(h \in H \) if \(f \) is monotone in \(s \) and is asymptotically between (and bounded away from) two successive eigenvalues (Mawhin [M.1]), or if \(f \) is monotone in \(s \) and “jumps” (asymptotically, going from \(-\infty\) to \(+\infty\)) from one eigenvalue to the next, or to the one below (provided neither is \(\lambda_0 = 0 \)) (Willem [Wi]).

These results have been recently unified and generalized to include nonuniformities in the avoidance of \(\Sigma \) (Mawhin and Ward [M-W.1, M-W.2]). Here we show that \(f \) may jump across arbitrarily many eigenvalues of finite multiplicity and (1.3) may still be solvable for all \(h \in H \).

2. Statement of results. The following is our main result.

Theorem 1. Let \(f: J \times \mathbb{R} \to \mathbb{R} \) satisfy the Carathéodory conditions and (1.1). Let \(h \in L^2(J) \) and suppose:

1. \(f(t,x,s) \) is monotone nondecreasing in \(s \) for each \((t,x) \in J \).
2. There is a number \(\alpha > 0 \) and a function \(\beta \in H \) such that
 \[
 |f(t,x,s)| \leq f(t,x,s) + \alpha|s| + \beta(t,x)
 \]
 for all \((t,x,s) \in J \times \mathbb{R} \).
3. There is a number \(\eta_0 > 0 \) such that \(0 < \eta_0 \leq \lim_{|s| \to \infty} s^{-1}f(t,x,s) \), uniformly in \((t,x) \in J \).

Then there is a number \(\alpha_0 > 0 \) such that a weak solution to the doubly 2\(\pi \)-periodic problem for (1.2) exists whenever \(\alpha < \alpha_0 \).

Remark 1. One may instead assume \(f(t,x,s) \) is nonincreasing in \(s \) and the existence of \(\eta_0 < 0 \) with \(0 > \eta_0 \geq \lim_{|s| \to \infty} s^{-1}f(t,x,s) \). One may also replace \(f \) in (c2) by \(-f\).

As a corollary we have the following result on jumping nonlinearities. Consider the equation

\[
(2.1) \quad u_{tt} - u_{xx} + \alpha_- u^- - \alpha_+ u^+ - g(t,x,u) = h(t,x)
\]

where \(u^+ = \max(u,0) \), \(u^- = \max(-u,0) \), and \(u = u^+ - u^- \). Suppose \(h \in L^2(J) \) and \(g: J \times \mathbb{R} \to \mathbb{R} \) satisfies the Carathéodory conditions and (1.1).

Corollary 1. Let \(\alpha_- \) and \(\alpha_+ \) be positive numbers. Suppose \(f(t,x,s) := -\alpha_- s^- + \alpha_+ s^+ + g(t,x,s) \) is monotone nondecreasing in \(s \) and

\[
\lim_{|s| \to \infty} s^{-1}g(t,x,s) = 0,
\]

uniformly for \((t,x) \in s \). Then there is a number \(\alpha_0 > 0 \) such that (2.1) has a weak doubly 2\(\pi \)-periodic solution provided \(0 < \alpha_- < \alpha_0 \) (or \(0 < \alpha_+ < \alpha_0 \)). (\(\alpha_0 \) does not depend on \(\alpha_+, g, \) or \(h \)).

Remark 2. A similar corollary is true with \(\alpha_- \), \(\alpha_+ \) negative and \(f(t,x,s) \) nonincreasing in \(s \).

Remark 3. We note that if \(\alpha_- < \alpha_+ \) then we may have \(|\alpha_- , \alpha_+| \cap \Sigma \neq \emptyset \). Indeed, the interval \(|\alpha_- , \alpha_+| \) may contain any finite number of positive eigenvalues.
REMARK 4. The corollary may be viewed as a surjectivity result concerning operators of the form $Lu + \alpha_- u^- - \alpha_+ u^+$, where L is the D'Alembertian realized in $L^2(J)$ with our boundary conditions.

3. Abstract formulation and proofs. Let $H = L^2(J)$ with inner product $(u, v) = \int_J uv \, dt \, dx$ and corresponding norm $\| \cdot \|$. Each $u \in H$ has a representation as a Fourier series of the form

$$u = \sum_{(m,n) \in \mathbb{Z} \times \mathbb{Z}} \alpha_{mn} u_{mn},$$

where $u_{mn} = e^{i(mt+nx)}$ for $(m,n) \in \mathbb{Z} \times \mathbb{Z}$ and $\alpha_{m,n} \in \mathbb{C}$ with $\alpha_{m,n} = \overline{\alpha_{-m,-n}}$ to make the sum real.

Let

$$D(L) = \left\{ u \in H : \sum_{(m,n) \in \mathbb{Z} \times \mathbb{Z}} (n^2 - m^2)^2 |\alpha_{mn}|^2 < \infty \right\}.$$

Define $L : D(L) \subseteq H \to H$ by

$$Lu = \sum_{(m,n) \in \mathbb{Z} \times \mathbb{Z}} (n^2 - m^2) \alpha_{mn} u_{mn} \quad \text{for } u \in D(L).$$

Let $F : H \to H$ be the substitution operator defined by F. It is known that u is a weak solution of the doubly 2π-periodic problem for (1.2) if and only if $u \in D(L)$ and

$$(3.1) \quad Lu - F(u) = h$$

PROOF OF THEOREM 1. Let λ_1 be the first positive eigenvalue of L (i.e., smallest positive number in Σ so that $\lambda_1 = 1$). Choose $\epsilon_0 > 0$ so that $\epsilon_0 < \min(\lambda_1, \eta_0)$. For $\lambda \in]0,1[$ consider the family of equations

$$(3.2) \quad Lu - (1 - \lambda) \epsilon_0 u - \lambda F(u) = \lambda h.$$

The operator $(L - \epsilon_0 I)^{-1}$ is not compact. Nevertheless, it follows from a theorem in Willem's paper [Wi] (or see [M.2]) that it suffices to show that all possible solutions of (3.2) are bounded in H independently of $\lambda \in]0,1[$.

If (u, λ) is a solution of (3.2) with $0 < \lambda < 1$ then

$$(3.3) \quad Lu - (1 - \lambda) \epsilon_0 u - \lambda f(t,x,u) = \lambda h(t,x),$$

and by taking inner products with 1 we derive, since $(Lu,1) = 0$,

$$(3.4) \quad \lambda \int_J f(t,x,u) \, dt \, dx = -(1 - \lambda) \epsilon_0 \int_J u \, dt \, dx - \lambda \int_J h(t,x) \, dt \, dx.$$

Taking absolute values in (3.3) and using (c2) we have a.e. on J:

$$|Lu(t,x)| \leq (1 - \lambda) \epsilon_0 |u(t,x)| + \lambda f(t,x,u(t,x)) + \alpha |u(t,x)| + \beta(t,x) + |h(t,x)|.$$

Integrating over J and using (3.4) we obtain

$$(3.5) \quad |Lu|_{L^1} \leq (2\epsilon_0 + \alpha) |u|_{L^1} + C_1$$

where C_1 is a constant.
For \(u \in H \) let us write \(u = u_0 + u_1 \) with \(u_0 \in \ker L \) and \(u_1 \in \ker L^\perp = \text{Range } L \).
It is known (cf., e.g., [L or C-H]) that there is a constant \(\mu > 0 \) such that for
\(u = u_0 + u_1 \in D(L), \)
\[|u_1|_{L^\infty} \leq \mu |Lu_1|_{L^1}. \]

Thus for any solution \(u \) of (3.2) we have
\[|u_1|_{L^\infty} \leq \mu |Lu_1|_{L^1} \leq \mu (2\varepsilon_0 + \alpha) |u|_{L^1} + \mu C_1 \]
and
\[(3.6) \quad |u_1|_{L^\infty} \leq (2\varepsilon_0 + \alpha) C_2 |u| + C_3 \]
for some constants \(C_2 \) and \(C_3 \). Of course, by (3.5) we also have
\[(3.7) \quad |Lu_1|_{L^1} \leq (2\varepsilon_0 + \alpha) C_4 |u| + C_1. \]

Taking the inner product of the expression on each side of (3.2) with \(u \) we derive
\[(3.8) \quad (1 - \lambda) \varepsilon_0 |u|^2 + \lambda \int J f(t, x, u) u = (Lu, u) - \lambda (h, u). \]

By condition (c3) there is a number \(r > 0 \) such that
\[f(t, x, s)s \geq \varepsilon_0 s^2 \]
for \(|s| \geq r \). Thus there is a function \(\gamma \in H \) with
\[f(t, x, s)s \geq \varepsilon_0 s^2 - \gamma(t, x) \]
for all \((t, x, s) \in J \times \mathbb{R} \). From (3.8) we see that
\[(1 - \lambda) \varepsilon_0 |u|^2 + \lambda \int J \varepsilon_0 |u|^2 dt dx - \int J \gamma dt dx \leq |(Lu, u)| + \|h\| \cdot \|u\|. \]

Thus there is a constant \(C \) with
\[\varepsilon_0 |u|^2 \leq |(Lu_1, u_1)| + \|h\| \cdot |u| + C \]
\[\leq |Lu_1|_{L^1} \cdot |u_1|_{L^\infty} + \|h\| \cdot |u| + C. \]

By (3.6) and (3.7) we now obtain
\[\varepsilon_0 |u|^2 \leq [(2\varepsilon_0 + \alpha) C_4 |u| + C_1] [(2\varepsilon_0 + \alpha) C_2 |u| + C_3] + \|h\| \cdot |u| + C \]
and, hence,
\[\varepsilon_0 |u|^2 \leq (2\varepsilon_0 + \alpha)^2 k_1 |u|^2 + k_2 |u| + k_3 \]
for some constants \(k_1, k_2, \) and \(k_3 \).

A subtraction yields
\[(3.9) \quad [\varepsilon_0 - (2\varepsilon_0 + \alpha)^2 k_1] |u|^2 \leq k_2 |u| + k_3. \]

By now choosing \(\varepsilon_0 \) and \(\alpha_0 \) sufficiently small we can insure that, since \(\alpha < \alpha_0, \)
\[\varepsilon_0 - (2\varepsilon_0 + \alpha)^2 k_1 > 0, \]
which, by (3.9), implies \(|u| < M \) for some constant \(M > 0 \). All possible solutions of (3.2) are thus bounded independently of \(\lambda \in]0, 1[, \) and (3.1) has a solution.

Proof of the Corollary. We take
\[f(t, x, s) = -\alpha_- s^- + \alpha_+ s^+ + g(t, x, s). \]
By hypothesis f is monotone nondecreasing in s. Also
\[
|f(t, x, s)| \leq \alpha_- s^- + \alpha_+ s^+ + |g(t, x, s)|
\]
\[
\leq f(t, x, s) + 2\alpha_- s^- + 2|g(t, x, s)|.
\]
By hypothesis, for each $\varepsilon > 0$ there exists $\gamma_\varepsilon \in H$ with $|g(t, x, s)| \leq \varepsilon |s| + \gamma_\varepsilon (t, x)$. It follows that
\[
|f(t, x, s)| \leq f(t, x, s) + (2\alpha_- + 2\varepsilon) |s| + 2\gamma_\varepsilon (t, x),
\]
which shows (c2) holds. Since $\varepsilon > 0$ may be chosen arbitrarily small we can insure that $2\alpha_- + 2\varepsilon < \alpha_0$, where α_0 is the number in Theorem 1, by requiring $\alpha_- < \alpha_0/2$ and then choosing ε. Since
\[
\lim_{|s| \to \infty} s^{-1} f(t, x, s) > \min(\alpha_-, \alpha_+) > 0,
\]
the corollary follows.

Remark 5. Instead of looking for solutions 2π-periodic in t and x we could also formulate our results for solutions ω_1-periodic in t and ω_2-periodic in x if we insist that ω_1/ω_2 be a rational number. This would insure that the d’Alembertian with these boundary conditions is realized in H by a selfadjoint operator having properties like those of L above. If ω_1/ω_2 is irrational, small divisors appear in the right inverse of L which lead to unsolved difficulties.

4. A counterexample. It is easy to see that the corollary is false if $\alpha_- = 0$ and $\alpha_+ > 0$. For example, if $g \equiv 0$ we have
\[
Lu - \alpha^+ u^+ = h,
\]
and by taking inner products with 1 we see that h must satisfy $(h, 1) \leq 0$. Thus (4.1) cannot be solvable for all $h \in H$. In spite of this, (4.1) is certainly solvable for some $h \in H$. One might expect a solution if
\[
(h, 1) = \int_J h \, dt \, dx < 0.
\]
We show however that there may not be a solution even then.

It is easy to show that $u \in \ker L$ if and only if $u = p(t + x) + q(t - x)$ for some p, q each 2π-periodic on \mathbb{R} with $p, q \in L^2(0, 2\pi)$.

Let $0 < \delta_1 < \delta_2 < \pi$ and $p : [0, 2\pi] \to \mathbb{R}$ be at least C^2 smooth and defined by
\[
p(s) = \begin{cases}
3 & \text{if } |\pi - s| \leq \delta_1, \\
0 & \text{if } |\pi - s| \geq \delta_2 \text{ and } 0 \leq s \leq 2\pi, \\
0 \leq p(s) \leq 3 & \text{elsewhere}.
\end{cases}
\]
Extend p 2π-periodically to all of \mathbb{R} and define $\phi \in H$ by
\[
\phi(t, x) = p(t + x) \quad \text{for } (t, x) \in J.
\]
Then $\phi \in \ker L$; indeed, ϕ is a smooth (classical) solution of $u_{tt} - u_{xx} = 0$ and ϕ is 2π-periodic in each of x and t.

By choosing δ_2 sufficiently small we can insure that
\[
\int_J \phi \, dt \, dx < 4\pi^2.
\]
On the other hand, by choosing δ_1 sufficiently close to δ_2, one can insure that
\[\int_{\Omega} \phi \, dt \, dx < \int_{\Omega} \phi^2 \, dt \, dx. \]

Now consider (4.1) with $h = \phi - 1$. We observe that
\[\int_{\Omega} h \, dt \, dx = \int_{\Omega} \phi \, dt \, dx - 4\pi^2 < 0. \]

Suppose $u \in D(L)$ solves
\[(4.2) \quad Lu - \alpha_u u^+ = \phi - 1. \]

Taking inner products with ϕ we obtain, since $(Lu, \phi) = 0$,
\[0 \geq -\alpha_u \int_{\Omega} u^+ \phi \, dt \, dx = \int_{\Omega} (\phi - 1) \phi \, dt \, dx > 0. \]

Thus (4.2) cannot have a solution.

If we now let $h = \mu(\phi - 1)$ with $\mu \gg 1$ we see that there still is not a solution even when $-\int_{\Omega} h$ is large.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, ALABAMA 35486