Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A characterization of the Weyl spectrum

Author: Andrzej Pokrzywa
Journal: Proc. Amer. Math. Soc. 92 (1984), 215-218
MSC: Primary 47A53; Secondary 47A10
MathSciNet review: 754706
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that for each closed subset $ \Omega $ of the semi-Fredholm domain of a bounded linear operator $ T$ acting in a complex Hilbert space $ H$ there exists a subspace of a finite codimension in $ H$ such that the compression of $ T - \lambda $ to this subspace is a left- or right-invertible operator for all $ \lambda $ in $ \Omega $. From this result we obtain a characterization of the Weyl spectrum of $ T$.

References [Enhancements On Off] (What's this?)

  • [1] C. Apostol, The correction by compact perturbation of the singular behavior of operators, Rev. Roumaine Math. Pures Appl. 21 (1976), 155-175. MR 0487559 (58:7180)
  • [2] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., Bd. 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [3] N. Salinas, A characterization of the Browder spectrum, Proc. Amer. Math. Soc. 38 (1973), 369373. MR 0313852 (47:2405)
  • [4] K. Gustafson, The Weyl-Browder algebraic essential spectrum and the Weinstein-Aronszajn determinant theory, Notices Amer. Math. Soc. 22 (1975), A709.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A53, 47A10

Retrieve articles in all journals with MSC: 47A53, 47A10

Additional Information

Keywords: Semi-Fredholm domain, Weyl spectrum, compression of an operator
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society