ON SUMMABILITY OF FOURIER SERIES AT A POINT
G. D. DIKSHIT

ABSTRACT. In this paper summability of Fourier series by a regular linear method of summation determined by a triangular matrix, has been studied and various results—some known and some new—on Cesàro and Nörlund summability have been deduced. A convergence criterion has also been obtained.

1. Let $C = (c_{n,k})$, $k = 0, 1, 2, \ldots, n$, be a triangular matrix and let

$$t_n = \sum_{k=0}^{n} c_{n,k} s_k,$$

where $\{s_k\}$ is a given sequence of numbers. If $t_n \to s$ as $n \to \infty$, $\{s_n\}$ is called summable (C) to s. In this paper we assume $c_{n,k} \geq 0$ for $k = 0, 1, 2, \ldots, n$, and $\sum_{k=0}^{n} c_{n,k} = 1$. Then a necessary and sufficient condition for regularity of the method (C) is

$$\lim_{n \to \infty} c_{n,k} = 0 \quad \text{for each } k.$$

In the case

$$c_{n,k} = \frac{A_{n-k}}{A_n}, \quad \alpha \geq 0,$$

where $\{A_n\}$ is determined by the identity

$$(1-x)^{-\alpha} = \sum_{0}^{\infty} A_n^{-1} x^n \quad (|x| < 1),$$

the method (C) reduces to the well-known Cesàro method (C, α). For

$$c_{n,k} = p_{n-k}/P_n, \quad P_n = p_0 + p_1 + \cdots + p_n > 0,$$

the method (C) reduces to the Nörlund method (N, p). In the case $p_n = 1/(n+1)$, the Nörlund method $(N, 1/(n+1))$ is also known as the harmonic method.

Let f be a Lebesgue integrable periodic function with period 2π and let

$$f(x) \sim \frac{1}{2} a_0 + \sum_{1}^{\infty} (a_n \cos nx + b_n \sin nx) = \sum_{0}^{\infty} A_n(x).$$

We write

$$\phi(t) = \frac{1}{2} \{f(x+t) + f(x-t) - 2f(x)\},$$

$$\Phi(t) = \int_{0}^{t} |\phi(u)| \, du \quad \text{and} \quad s_n(x) = \sum_{0}^{n} A_k(x).$$

Received by the editors October 13, 1983.
1980 Mathematics Subject Classification. Primary 42A24; Secondary 42A20, 40C05.
Key words and phrases. Triangular matrices, Cesàro method, Nörlund method, convergence criteria for Fourier series.

©1984 American Mathematical Society
0002-9939/84 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let
\[C_n(k) = \sum_{m=0}^{k} c_{n,n-m} \]
and, for \(u \geq 0 \), define \(C_n(u) = C_n([u]) \), where \([u]\) is the greatest integer function.

Throughout the paper \(K \) is used to denote an absolute constant, not necessarily the same at each occurrence.

2. We establish the following

THEOREM. Let \(\{c_{n,k}\} \) be nondecreasing with respect to \(k \). Let \(\chi \) be a positive function defined over \((0, \infty)\) such that as \(n \to \infty \), (i) \(n\chi(n) = O(1) \) and (ii) \(\int_{1}^{n} \chi(u)C_n(u) \, du = O(1) \). Then if \(\Phi(t) = o(\chi(\pi/t)) \), as \(t \to 0^+ \), the series \(\sum A_n(x) \) is summable \((C)\) to \(f(x) \).

3. **Proof.** We have that \(\{c_{n,k}\} \) is nonnegative and nondecreasing in \(k \). Hence,
\[(n-k)c_{n,k} \leq \sum_{m=k+1}^{n} c_{n,m} \leq 1. \]
Thus for each fixed \(k \), \(c_{n,k} \to 0 \) as \(n \to \infty \), that is, \((C)\) is a regular method.

In view of the fact that the convergence of Fourier series at a point is a local property of the generating function, we may take \(\phi(t) = 0 \) over \([\delta, \pi]\), where \(0 < \delta < \pi \). We choose \(\delta \) such that \(\Phi(t) = o(\chi(\pi/t)) \) for \(t \in (0, \delta) \). Let
\[t_n(x) = \sum_{k=0}^{n} c_{n,k}s_k(x). \]
Then we need to show that \(t_n(x) - f(x) = o(1) \) as \(n \to \infty \). After the Dirichlet integral, for \(n > \pi/\delta \),
\[t_n(x) - f(x) = \sum_{k=0}^{n} c_{n,k}s_k(x) - f(x) = \frac{1}{\pi} \int_{0}^{\delta} \phi(t)L(n,t) \, dt \]
\[= \frac{1}{\pi} \left\{ \int_{0}^{\pi/n} + \int_{\pi/n}^{\delta} \right\} = I_1 + I_2, \quad \text{say}, \]
where
\[L(n,t) = \sum_{k=0}^{n} \frac{c_{n,k} \sin \left(k + \frac{1}{2} \right)t}{\sin \left(\frac{1}{2} t \right)}. \]
As
\[|L(n,t)| \leq \pi \sum_{k=0}^{n} \left(k + \frac{1}{2} \right) c_{n,k} \leq \pi \left(n + \frac{1}{2} \right), \]
we get
\[|I_1| \leq \left(n + \frac{1}{2} \right) \int_{0}^{\pi/n} |\phi(t)| \, dt = o(n\chi(n)) = o(1), \]
as \(n \to \infty \).

Next, in view of the order estimates of McFadden [4, Lemma 5.11],
\[\left| \sum_{k=a}^{b} c_{n,n-k}e^{i(n-k)t} \right| \leq KC_n(\pi/t), \]
where $0 \leq a \leq b \leq \infty$, $0 < t \leq \pi$, and n a positive integer, we obtain

\[|I_2| \leq K \int_{\pi/n}^{\delta} \frac{|\phi(t)| C_n(\pi/t)}{t} \, dt \]

\[= K \sum_{k=r}^{n-1} \int_{\pi/(k+1)}^{\pi/k} \frac{|\phi(t)| C_n(\pi/t)}{t} \, dt + K \int_{\pi/r}^{\delta} \frac{|\phi(t)| C_n(\pi/t)}{t} \, dt, \]

where r is a positive integer such that $\pi/r \leq \delta < \pi/(r + 1)$. As

\[\int_{\pi/(k+1)}^{\pi/k} \frac{|\phi(t)| C_n(\pi/t)}{t} \, dt = \left[\frac{C_n(\pi/t)}{t} \Phi(t) \right]_{\pi/(k+1)}^{\pi/k} + \int_{\pi/(k+1)}^{\pi/k} \frac{\Phi(t) C_n(\pi/t)}{t^2} \, dt, \]

\[|I_2| \leq o(C_n(r)) + o(n\chi(n)C_n(n)) + K \int_{\pi/n}^{\delta} \frac{\Phi(t) C_n(\pi/t)}{t^2} \, dt \]

\[= o(1) + o \left(\int_1^n \chi(u) C_n(u) \, du \right) = o(1). \]

This completes the proof of the Theorem.

4. The four corollaries in this section follow as a result of our Theorem.

Corollary 1 (Hardy [2]). Let $\alpha > 0$. If $\Phi(t) = o(t)$, as $t \to 0+$, then $\sum A_n(x)$ is summable (C, α) to $f(x)$.

The case $\alpha = 1$ is the classical result of Lebesgue (see [10, Theorem III 3.9]).

Proof. Let $\chi(u) = \pi/u$ and $c_{n,k} = A_{n-k}^{\alpha-1}/A_n^{\alpha}$. Then $\chi(\pi/t) = t$ and

\[C_n(u) = \sum_{m=0}^{[u]} c_{n,n-m} = \sum_{m=0}^{[u]} A_{n-k}^{\alpha-1}/A_n^{\alpha} = \frac{A_{[u]}^{\alpha}}{A_n^{\alpha}}. \]

Thus $n\chi(n) = \pi$ and

\[\int_1^n \chi(u) C_n(u) \, du = O(n^{-\alpha}) \int_1^n u^{\alpha-1} \, du = O(1) \quad \text{as } n \to \infty. \]

Hence all the hypotheses of the Theorem are satisfied and the result follows.

Corollary 2. (i) (Siddiqi [6]). If $\Phi(t) = o(t/\log(2\pi/t))$, as $t \to 0+$, then $\sum A_n(x)$ is summable $(N, 1/(n + 1))$ to $f(x)$.

(ii) If $\Phi(t) = o(t/\{\log(3\pi/t) \log(3\pi/t)\})$, as $t \to 0+$, then $\sum A_n(x)$ is summable $(N, 1/\{n + 2\log(n + 2)\}$).

(iii) If $\Phi(t) = o(t/\{\log(k\pi/t) \log_2(k\pi/t) \cdots \log_q(k\pi/t)\})$, as $t \to 0+$, then $\sum A_n(x)$ is summable $(N, 1/\{(n + k) \log(n + k) \cdots \log_{q-1}(n + k)\}$, to $f(x)$, where $\log_r x = \log(\log_{r-1} x)$, for $r \geq 2$, and k is such that $\log_q k > 0$.

Proof. To deduce this corollary, note that, in case (i) taking

\[\chi(u) = \frac{\pi}{u \log 2u} \quad \text{and} \quad c_{n,k} = \frac{1/(n + 1 - k)}{\sum_{0}^{n} 1/(k + 1)}, \]
we obtain
\[\chi(\pi/t) = t/\log(2\pi/t), \]
\[n\chi(n) = \pi/\log 2n = o(1) \quad \text{as } n \to \infty, \]
\[C_n(u) = \sum_{0}^{[u]} 1/(m + 1)/\sum_{0}^{n} 1/(k + 1), \]
and thus
\[\int_{1}^{n} \chi(u)C_n(u) \, du = O\left(\frac{1}{\log n}\right) \int_{1}^{n} \frac{1}{u} \, du = O(1). \]

Thus the hypotheses of the Theorem are satisfied and the result follows.

The choice of \(\chi, c_{n,k}, C_n(u), \) etc., is similarly suggested in each of the cases (ii) and (iii), and the proof of the corollary is completed.

COROLLARY 3. Let \(\{p_n\} \) be a nonnegative, nonincreasing sequence and let \(p(1/t) = p([1/t]) \) and \(P(1/t) = P([1/t]) \).

(i) (SINGH [7]). If (a) \(\Phi(t) = o(t/\log(\pi/t)) \) as \(t \to 0+ \), and
(b) \(\sum_{1}^{n} (P_k/k \log(k + 1)) = O(P_n), \)
then \(\sum A_n(x) \) is summable \((N,p)\) to \(f(x) \).

(ii) (PATI [5]). If (c) \(\Phi(t) = o(t/P(1/t)) \) as \(t \to 0+ \), and
(d) \(\log n = O(P_n), \)
then \(\sum A_n(x) \) is summable \((N,p)\) to \(f(x) \).

(iii) (SINGH [8]). If (e) \(\Phi(t) = o(p(1/t)/P(1/t)) \), as \(t \to 0+ \), then \(\sum A_n(x) \) is summable \((N,p)\) to \(f(x) \).

REMARKS. In their theorems both Pati and Singh have assumed an extra hypothesis on \(\{P_n\} \): \("P_n \to \infty, \text{ as } n \to \infty". \)

PROOF. Since \(\{p_n\} \) is nonnegative and nonincreasing,
\[(n + 1)p_n \leq p_0 + p_1 + \cdots + p_n = P_n. \]
Therefore \(np_n/P_n = O(1), \) as \(n \to \infty. \) Taking \(c_{n,k} = p_{n-k}/P_n \) we obtain
\[C_n(u) = P(u)/P_n. \]

Case (i). Take \(\chi(u) = 1, \) for \(u \in (0, 2) \) and \(\chi(u) = \pi/(u \log u) \) for \(u \in [2, \infty). \)
Then for \(t \in (0, 1/2), \)
\[\chi(\pi/t) = t/\log(\pi/t), \]
and, for \(n \geq 2, \)
\[n\chi(n) = \pi/\log n. \]

Thus
\[n\chi(n) = o(1) \quad \text{as } n \to \infty. \]
Also

\[\int_{1}^{n} \chi(u)C_n(u) \, du = \frac{P_1}{P_n} + \frac{\pi}{P_n} \int_{2}^{n} \frac{P(u)}{u \log u} \, du = \frac{P_1}{P_n} + \frac{\pi}{P_n} \sum_{k=2}^{n-1} \frac{P_k}{u \log u} \, du \leq \frac{1}{P_n} \left\{ P_1 + \pi \sum_{k=2}^{n-1} \frac{P_k}{k \log k} \right\} \leq K \left(\frac{1}{P_n} \right) \sum_{k=1}^{n} \frac{P_k}{k \log(k+1)} = O(1) \quad \text{as } n \to \infty,\]

and the hypotheses of the Theorem are satisfied.

Case (ii). Take \(\chi(u) = 1/uP(u) \). Then

\[n\chi(n) = 1/P(n) = O(1), \quad \text{as } n \to \infty,\]

and

\[\int_{1}^{n} \chi(u)C_n(u) \, du = \frac{1}{P_n} \int_{1}^{n} \frac{1}{u} \, du = \frac{\log n}{P_n} = O(1).\]

Case (iii). Let \(\chi(u) = p(u)/P(u) \). Then

\[n\chi(n) = np_n/P_n = O(1),\]

as shown earlier, and also

\[\int_{1}^{n} \chi(u)C_n(u) \, du = \frac{1}{P_n} \int_{1}^{n} p(u) \, du = O(1).\]

Thus in each of these cases, the hypotheses of the Theorem are satisfied and the corollary follows.

Corollary 4 (A Convergence Criterion). Let \(\chi \) be a decreasing function such that \(\int_{1}^{n} \chi(u) \, du = O(1) \). If \(\Phi(t) = o(\chi(\pi/t)) \), as \(t \to 0+ \), then \(\sum A_n(x) \) converges to \(f(x) \).

In particular, if \(\chi(\pi/t) \) denotes any of the following:

(i) \(t/(\log(2\pi/t))^{1+\varepsilon} \),
(ii) \(\{\log(k\pi/t)(\log \log(k\pi/t))^{1+\varepsilon}\} \ldots \) where \(\varepsilon > 0 \) and \(k \) is appropriately chosen, then \(\Phi(t) = O(\chi(\pi/t)) \) implies that \(\sum A_n(x) \) converges to \(f(x) \).

Remarks. This result may be compared with the corresponding classical results on nonconvergence of a Fourier series at a point of continuity, e.g. see [10, Theorem VIII 2.4, p. 303]. Thus, in the suggested particular cases, \(\varepsilon > 0 \) may not be replaced by \(\varepsilon = 0 \). For other alternate convergence criteria involving the case \(\varepsilon = 0 \), see [3, Theorems 3, 10; 9, Theorems 2, 3].

We shall need the following result for a proof of Corollary 4.

Lemma [1]. Let \(\{p_n\} \) satisfy the Kaluza conditions:

for \(n \geq 0 \), \(p_n > 0 \) and \(p_{n+1}/p_n \leq p_{n+2}/p_{n+1} \leq 1.\)
Then if \(\{P_n\} \) is bounded, the method \((N,p)\) is ineffective, i.e. only convergent sequences are summable by the method.

Proof of Corollary 4. We first note that as \(\chi \) is decreasing,
\[
n\chi(n) \leq \int_1^n \chi(u) \, du = O(1).
\]
Now choosing \(c_{n,k} = P_{n-k}/P_n \) such that \(\{p_n\} \) satisfies the requirements of the Lemma (e.g. \(\{p_n\} \) may be taken to be one of the sequences
\[
\left\{ \frac{1}{(n+1)(n+2)} \right\}, \quad \left\{ \frac{1}{2^n} \right\}, \quad \left\{ \frac{1}{(n+2)(\log(n+2))^{1+\varepsilon}} \right\}, \quad \varepsilon > 0,
\]
ecc., we see that the hypotheses of the Theorem are satisfied, and thus we complete the proof.

In the case of the particular instances cited, we note that
\[
\Phi(t) = O(t/(\log(2\pi/t))^{1+\varepsilon}), \quad \text{as } t \to 0+
\]
implies that
\[
\Phi(t) = o(t/(\log(2/t))^{1+2/\varepsilon}), \quad \text{as } t \to 0+,\]
and similarly in the other cases, and then the results as claimed follow.

References

Department of Mathematics and Statistics, University of Auckland, Auckland, New Zealand