M-ACCRETIVE OPERATORS WITH M-DISPERSE RESOLVENTS

RALPH DELAUBENFELS

Abstract. We characterize linear m-accretive operators with m-dispersive resolvents. T is linear and m-accretive, with $(X + T)^{-1}$ m-dispersive, if and only if the sequence $\left\langle n! \phi(\lambda + T)^{n+1}x \right\rangle_{n=0}^{\infty}$ equals the moments of a positive measure on the positive real line, for sufficiently many ϕ in X^*, x in X.

Introduction. Classical analysis is often very useful in linear operator theory. In another paper, we show that in the sequence $\left\langle \phi(T^n x) \right\rangle_{n=0}^{\infty}$ equals the moments of a positive measure, for sufficiently many ϕ in X^*, x in X. In this paper, we consider the sequence $\left\langle n! \phi(\lambda + T)^{n+1}x \right\rangle_{n=0}^{\infty}$, for some positive λ, and again apply the classical analysis of the moment problem.

We say that a sequence of real numbers $(a_n)_{n=0}^{\infty}$ satisfies a Stieltjes moment condition if $\sum_{k=0}^{n} a_k a_{k+1} > 0$ and $\sum_{k=0}^{n} a_k a_{k+1} > 0$, for all finite sequences (a_k) of complex numbers. These conditions are satisfied if and only if there exists a positive measure μ so that

$$a_n = \int_0^\infty t^n d\mu(t) \quad \text{for all } n$$

We will say $(a_n)_{n=0}^{\infty}$ is Stieltjes if, in addition, $\sum_{k=0}^{n} \inf_{k \leq n} |a_k|^{-1/2k}$ is infinite. When $(a_n)_{n=0}^{\infty}$ is Stieltjes, the positive measure μ is unique.

If T is a linear operator, then a vector x is quasi-analytic for T if $\sum_{k=0}^{n} \inf_{k \leq n} \|T^k x\|^{-1/k}$ is infinite. $D_q(T)$ is the set of all quasi-analytic vectors for T (see [1]).

T is m-accretive if it is densely defined and $(-T)$ generates a 1-parameter contraction semigroup. If the semigroup is positive, on a Banach lattice, T is m-dispersive.

See [2] for other terminology in operator theory, such as accretive and core.

Theorem. Suppose X is a Banach lattice, T is closed, densely defined and accretive, and there exists $D \subseteq X^+ \cap D_q(T)$ such that $(\lambda + T)(D) \subseteq D$ and span (D) is a core for $(\lambda + T)^2$, for some $\lambda > 0$. Then T is m-accretive, with $(\lambda + T)^{-1}$ m-dispersive if and only if the sequence $\left\langle n! \phi(\lambda + T)^{n+1}x \right\rangle_{n=0}^{\infty}$ satisfies a Stieltjes moment condition for all ϕ in $(X)^+$, x in D.
PROOF. Suppose T is m-accretive, with $(\lambda + T)^{-1}$ m-dispersive.

We have, for all ϕ in X^*, x in the domain of T, the resolvent formula

$$n!\phi(\lambda + T)^{n+1} x = \int_0^\infty s^n \phi(e^{-s(\lambda + T)^{-1}} x) \, ds.$$

When $\phi \in (X^*)^+$, $x \in \mathcal{D}$, then $e^{-s(\lambda + T)^{-1}}$, the semigroup generated by $(\lambda + T)^{-1}$ is positive, so $\phi(e^{-s(\lambda + T)^{-1}} x) \, ds$ is a positive measure. Thus, $\left\langle n!\phi(\lambda + T)^{n+1} x \right\rangle_{n=0}^\infty$ satisfies a Stieltjes moment condition. (Note that the density of the domain of T was not needed here.)

Conversely, suppose $\left\langle n!\phi(\lambda + T)^{n+1} x \right\rangle_{n=0}^\infty$ satisfies a Stieltjes moment condition, for all ϕ in $(X^*)^+$, $x \in \mathcal{D}$.

Since $x \in \mathcal{D}(T)$, the sequence is Stieltjes. Thus, if $\phi \in (X^*)^+$, $x \in \mathcal{D}$, there exists a unique positive measure $\mu_{\phi,x}$ such that

$$n!\phi(\lambda + T)^{n+1} x = \int_0^\infty t^n \, d\mu_{\phi,x}(t) \text{ for all } n.$$

Note that

$$\int_0^\infty t^n \int_t^\infty d\mu_{\phi,x}(s) \, dt = \int_0^\infty \int_0^s t^n \, d\mu_{\phi,x}(s) \, \frac{n!\phi(\lambda + T)^{n+1}}{n+1} x = \int_0^\infty t^n \, d\mu_{\phi,(\lambda - T)^{-1}} x.$$

Since the positive measure in (1) is unique, we have

$$\int_0^\infty d\mu_{\phi,x}(s) \, dt = d\mu_{\phi,(\lambda + T)^{-1}} x(t), \text{ for all } \phi \in (X^*)^+, x \in \mathcal{D}.$$

This implies that $d\mu_{\phi,(\lambda - T)^{-1}} x(t)/dt$ exists and is a continuous function of t. For each t, define $F(t): (\lambda + T)^2(\mathcal{D}) \to X^{**}$ by

$$[F(t)y](\phi) = \left. \frac{d\mu_{\phi,(\lambda - T)^{-1}} x(t)}{dt} \right|_{t=0}.$$

if ϕ is positive. For arbitrary $\phi \in X^*$, there exist positive $\phi_1, \phi_2, \phi_3, \phi_4$, with ϕ_1 orthogonal to ϕ_2, ϕ_3 orthogonal to ϕ_4 and $\phi = (\phi_1 - \phi_2) + i(\phi_3 - \phi_4)$. Then

$$[F(t)y] \phi = [F(t)y] \phi_1 - [F(t)y] \phi_2 + i([F(t)y] \phi_3 - [F(t)y] \phi_4).$$

To see that $F(t)y \in X^{**}$, note that if $\phi \in (X^*)^+$, $\phi(\lambda + T)x$ is positive, this implies that $\|F(t)(\lambda + T)x\| \leq \|(\lambda + T)x\|$. Thus $\|F(t)y\| \leq 1$, for all $t \geq 0$.

Note that $F(0)(\lambda + T)x = \int_0^\infty F(s)x \, ds = (\lambda + T)x$. Thus $F(0) = I$. Collecting all the facts about $F(t)$: For all $y \in (\lambda + T)^2(\mathcal{D}), \phi \in (X^*)^+$,

$$[F(t)y](\phi) \text{ is positive continuous function of } t,$$

$$F(0) = I.$$
(6) \[n!\phi(\lambda + T)^{n+1}y = \int_0^\infty t^n[F(t)y](\phi)\,dt, \]

(7) \[\int_t^\infty [F(s)y](\phi)\,ds = [F(t)(\lambda + T)y](\phi). \]

To show that \(T \) is \(m \)-accretive, we need to show that the range of \((\lambda + T)^3\) is dense. First, we will show that the range of \((\lambda + T)^3\) is dense in the range of \((\lambda + T)^2\), written \(R(\lambda + T)^2 \).

So suppose \(\phi \in [R(\lambda + T)^2]^\perp \), the annihilator of \(R(\lambda + T)^3 \). There exist positive \(\phi_1, \phi_2, \phi_3, \phi_4 \) with \(\phi_1 \) orthogonal to \(\phi_2 \), \(\phi_3 \) orthogonal to \(\phi_4 \), so that \(\phi = (\phi_1 - \phi_2) + i(\phi_3 - \phi_4) \).

Suppose \(y \in (\lambda + T)^2(\mathcal{D}) \). Then, for all \(n \), \(0 = n!\phi(\lambda + T)^{n+1}y \). By (6), this implies that

\[\int_0^\infty t^n[F(t)y](\phi_1)\,dt = \int_0^\infty t^n[F(t)y](\phi_2)\,dt. \]

Since \([F(t)y](\phi_i) \) is positive, for \(i = 1, 2 \), the uniqueness of the positive measure in (1) implies that \([F(t)y]\phi_1\,dt = [F(t)y]\phi_2\,dt \). Since \(F(t) \) is continuous, this implies that \([F(t)y]\phi_1 = [F(t)y]\phi_2 \); in particular,

\[\phi_1(y) = [F(0)y]\phi_1 = [F(0)y]\phi_2 = \phi_2(y). \]

By an identical argument, \(\phi_3(y) = \phi_4(y) \). Thus \(\phi(y) = 0 \).

Since the span of \(\mathcal{D} \) is a core for \((\lambda + T)^2\), \((\lambda + T)^3(\mathcal{D})\) is total in \(R(\lambda + T)^2 \).

Since \(\phi \) annihilates the total set \((\lambda + T)^2(\mathcal{D})\), \(\phi \in [R(\lambda + T)^2]^\perp \).

Thus, since \(T \) is closed, \(R(\lambda + T)^2 = R(\lambda + T)^3 \).

Since \(T \) is accretive, this implies that \(T \) is \(m \)-accretive, on \(R(\lambda + T)^2 \). This implies that \((\lambda + T)^{-1} \) is a bounded operator on \(R(\lambda + T)^2 \). Thus, if \(x \) is in the domain of \(T \), then \(x = (\lambda + T)^{-2}(\lambda + T)^2x \) is in \(R(\lambda + T)^2 \). Since the domain of \(T \) is dense, and \(T \) is closed, \(R(\lambda + T)^2 \), and therefore \(R(\lambda + T) \), equals \(X \). Thus \(T \) is \(m \)-accretive.

To show that \(T \) has an \(m \)-dispersive resolvent, we will extend \(F(t) \) to all of \(\mathcal{D} \), and show that it equals the semigroup generated by \((\lambda + T)^{-1}\).

Differentiating both sides of (7) gives

(8) \[-F(t)y = F'(t)(\lambda + T)y \quad \text{for all} \quad y \in (\lambda + T)^2(\mathcal{D}). \]

This implies that \(F(t)y = e^{-t(\lambda + T)^{-1}}y \) (the semigroup exists, because \((\lambda + T)^{-1} \) is bounded). Thus \(F(t)(\lambda + T)^2x \) is a \(C^\infty \) function of \(t \), for all \(x \) in \(\mathcal{D} \).

By (2), this implies that \(d\mu_{\phi,x}(t)/dt \) exists, and is a \(C^\infty \) function of \(t \), for all \(x \) in \(\mathcal{D} \), \(\phi \) in \((X^*)^+\).

Define \(G(t) : \mathcal{D} \to X^{**} \) exactly as \(F(t) \) was defined in (3). Equations (4)–(8) all hold for \(G(t) \).

Since \(e^{-t(\lambda + T)^{-1}}x \) (equal to \(G(t)x \)) is positive, for all \(x \) in \(\mathcal{D} \), and \(\mathcal{D} \) equals \(X^+ \), \(e^{-t(\lambda + T)^{-1}} \) is positive, so that \((\lambda + T)^{-1} \) is \(m \)-dispersive, concluding the theorem.

The hypotheses are clearly satisfied when \(T \) is bounded and accretive (letting \(\mathcal{D} = X^+ \)). Note that \(T \) is automatically \(m \)-accretive.
Corollary. Suppose X is a Banach lattice and T is bounded and accretive. Then $(\lambda + T)^{-1}$ is m-dispersive if and only if $\left\langle n!\phi(\lambda + T)^{n+1}x\right\rangle_{n=0}^{\infty}$ satisfies a Stieltjes moment condition for all ϕ in $(X^*)^+$, x in X^+.

References

Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755

Current address: Department of Mathematical Sciences, The University of Tulsa, 600 South College Avenue, Tulsa, Oklahoma 74104