Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A strong law of large numbers for martingales


Authors: Shey Shiung Sheu and Yu Shan Yao
Journal: Proc. Amer. Math. Soc. 92 (1984), 283-287
MSC: Primary 60G42; Secondary 60F15
DOI: https://doi.org/10.1090/S0002-9939-1984-0754722-4
MathSciNet review: 754722
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive a moment inequality for the Skorohod representation theorem and apply it to obtain a strong law of large numbers for martingales.


References [Enhancements On Off] (What's this?)

  • [1] L. Breiman, On the tail behavior of sums of independent random variables, Z. Wahrsch. Verw. Gebiete 9 (1967), 20-25. MR 0226707 (37:2294)
  • [2] Y. S. Chow, On a strong law of large numbers for martingales, Ann. Math. Statist. 38 (1967), 610. MR 0208648 (34:8457)
  • [3] D. Freedman, Brownian motion and diffusion, Holden-Day, San Francisco, Calif., 1971. MR 0297016 (45:6074)
  • [4] P. Hall and C. C. Heyde, Martingale limit theory and its applications, Academic Press, New York, 1980. MR 624435 (83a:60001)
  • [5] A. V. Skorohod, Studies in the theory of random processes, Addison-Wesley, Reading, Mass., 1965. MR 0185620 (32:3082b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G42, 60F15

Retrieve articles in all journals with MSC: 60G42, 60F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0754722-4
Keywords: Brownian motion, Skorohod's representation, strong law of large numbers, martingale
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society