Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On $ 2$-knot groups with abelian commutator subgroups


Author: Katsuyuki Yoshikawa
Journal: Proc. Amer. Math. Soc. 92 (1984), 305-310
MSC: Primary 57Q45
DOI: https://doi.org/10.1090/S0002-9939-1984-0754727-3
MathSciNet review: 754727
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper it is shown that if the commutator subgroup of a $ 2$-knot group is abelian, then it is isomorphic to $ Z \oplus Z \oplus Z$, $ {Z_\alpha }$, $ Z[1/2]$ or $ Z[1/2] \oplus {Z_5}$, where $ \alpha $ is an odd integer and $ Z[1/2]$ is the additive group of the dyadic rationals.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Elements of mathematics, Algebra. I, Addison-Wesley, Reading, Mass., 1973. MR 782296 (86k:13001a)
  • [2] R. H. Crowell, The group $ G'/G''$" of a knot group $ G$, Duke Math. J. 30 (1963), 349-354. MR 0154277 (27:4226)
  • [3] L. Fuchs, Infinite abelian groups, vols. 1 and 2, Academic Press, New York, 1970. MR 0255673 (41:333)
  • [4] M. A. Gutierrez, An exact sequence calculation for the second homotopy of a knot, Proc. Amer. Math. Soc. 32 (1972), 571-577. MR 0322848 (48:1209)
  • [5] J. C. Hausmann and M. Kervaire, Sous-groupes dérivés des groupes de noeuds, Enseign. Math. 24 (1978), 111-123. MR 0488072 (58:7643)
  • [6] G. Higman, B. H. Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247-254. MR 0032641 (11:322d)
  • [7] H. Hopf, Fundamentalgruppe und zweite Bettische gruppe, Comment. Math. Helv. 14 (1942), 257-309. MR 0006510 (3:316e)
  • [8] T. Kanenobu, Non-ribbon $ n$-knots with Seifert manifolds homeomorphic to punctured $ {S^n} \times {S^1}$, Math. Sem. Notes Kobe Univ. 10 (1982), 69-74. MR 672938 (83m:57015)
  • [9] M. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. MR 0189052 (32:6479)
  • [10] J. Levine, Knot modules. I, Trans. Amer. Math. Soc. 229 (1977), 1-50. MR 0461518 (57:1503)
  • [11] -, Some results on higher dimensional knot groups, Lecture Notes in Math., vol. 685, Springer-Verlag, Berlin and New York, 1978, pp. 243-269. MR 521737 (80j:57021)
  • [12] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977. MR 0577064 (58:28182)
  • [13] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.
  • [14] D. G. Northcott, A first course of homological algebra, Cambridge Univ. Press, London and New York, 1973. MR 0323867 (48:2220)
  • [15] E. S. Rapaport, On the commutator subgroup of a knot group, Ann. of Math. (2) 71 (1960), 157-162. MR 0116047 (22:6842)
  • [16] D. J. S. Robinson, A course in the theory of groups, Graduate Texts in Math., vol. 80, Springer-Verlag, Berlin, 1982. MR 648604 (84k:20001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57Q45

Retrieve articles in all journals with MSC: 57Q45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1984-0754727-3
Keywords: $ 2$-knot, abelian commutator subgroup
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society